Theorem 4.4.1.
Assume all functions are defined and bounded on \([a,b]\text{.}\)
- Riemann-Stieltjes integration is linear as a function of \(f\text{:}\) If \(f_1,f_2 \in R(g)\) on \([a,b]\) and \(c_1,c_2\) are constants, then \(c_1 f_1 + c_2 f_2 \in R(g)\) on \([a,b]\text{,}\) and\begin{equation} \int_a^b (c_1 f_1 + c_2 f_2) dg = c_1 \int_a^b f_1 dg + c_2 \int_a^b f_2 dg\text{.}\tag{4.4.4} \end{equation}Likewise, Riemann-Stieltjes integration is linear as a function of \(g\text{:}\) if \(f \in R(g_1)\) and \(f \in R(g_2)\) on \([a,b]\) and \(g = c_1 g_1 + c_2 g_2\) where \(c_1,c_2\) are constants, then \(f \in R(g)\) and\begin{equation} \int_a^b f dg = \int_a^b f d(c_1 g_1 + c_2 g_2) = c_1 \int_a^b f dg_1 + c_2 \int_a^b f dg_2\text{.}\tag{4.4.5} \end{equation}
- If \(f\) is continuous on \([a,b]\) and \(g\) is of bounded variation on \([a,b]\text{,}\) then the Riemann-Stieltjes integral \(\int_a^b f dg\) exists. In particular, the class of functions of bounded variation includes all monotone functions, and all difference of monotone functions. Thus if \(g\) is monotone (increasing or decreasing), or \(g = g_1 - g_2\) where each of \(g_1,g_2\) is monotone, and \(f\) is continuous, then the integral exists.
- The Riemann-Stieltjes integral satisfies integration by parts: If \(\int_a^b f dg\) exists, then \(\int_a^b g df\) exists, and\begin{equation} \int_a^b g df = \left. fg \right|_a^b - \int_a^b f dg\text{.}\tag{4.4.6} \end{equation}
- If \(f\) is Riemann integrable on \([a,b]\) and \(g'\) is continuous on \([a,b]\text{,}\) then\begin{equation} \int_a^b f dg = \int_a^b fg' dx\tag{4.4.7} \end{equation}(here the right hand side is a Riemann, not Riemann-Stieltjes, integral).