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Basic setup

I G = GL(n,C)

I B = lower-triangular Borel

I T = diagonal maximal torus

I W = NG (T )/T = Sn

I H = O(n,C) or Sp(n,C) if n is even



The weak order on B-orbit closures on G/H

Suppose that Y ,Y ′ are two B-orbit closures on G/H. The
covering relations for what is called the weak order on B\(G/H)
are as follows: Y ′ covers Y if and only if Y ′ = PαY 6= Y for some
simple root α.



Combinatorial models of B\(G/H) in our examples

When H = O(n,C), orbits are parametrized by involutions in Sn.
The lone closed orbit corresponds to w0, and the dense orbit to the
identity.

When H = Sp(2n,C), orbits are parametrized by fixed point-free
involutions in S2n. The lone closed orbit corresponds again to w0,
and the dense orbit to (1, 2)(3, 4) . . . (2n − 1, 2n).

The weak order is understood very explicitly on the level of these
parametrizations.
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Example 1: (G ,H) = (GL(5,C),O(5,C))



Example 2: (G ,H) = (GL(6,C), Sp(6,C))



The W -set of an orbit closure

Let Y be a B-orbit closure on G/H, and consider the set
W (Y ) ⊂W of distinct elements obtained by taking each path in
the weak order graph from the dense orbit up to Y , and for each
such path, taking the products of all edge labels. We call this the
W -set of Y .

Let Y(2n+1) or Y(2n) be the unique closed B-orbit when H is the
orthogonal group. Let Z(2n) be the unique closed B-orbit when H
is the symplectic group.

Q: Can we describe W (Y(2n+1)), W (Y(2n)), and W (Z(2n))
explicitly?
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A characterization of W (Y(2n)) and W (Y(2n+1))

Theorem 1 (Can-Joyce)

When H = O(n,C), the W -set of the unique closed orbit consists
of all permutations in Sn such that, in the one-line notation,

I n appears before 1, with nothing in between;

I n − 1 appears before 2, with nothing except possibly 1, n in
between;

I n − 2 appears before 3, with nothing except possibly
1, 2, n − 1, n in between;

I etc...
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Examples

I W (Y(3)) = {312, 231},

I W (Y(4)) = {4132, 3412, 3241},
I W (Y(5)) =
{51423, 45123, 42513, 42351, 51342, 35142, 34512, 34251},

I etc...
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A characterization of W (Z(2n))

Theorem 2 (Can-Joyce-W)

When H = Sp(2n,C), the W -set of the unique closed orbit consists
of all permutations in S2n such that, in the one-line notation,

I 1 appears before 2n, with nothing in between;

I 2 appears before 2n − 1, with nothing in between;

I 3 appears before 2n − 2, with nothing in between;

I etc...
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Examples

I W (Z(4)) = {1423, 2314},

I W (Z(6)) =
{162534, 163425, 251634, 253416, 341625, 342516},

I etc...
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A generalization

G/H is a non-compact homogeneous space. It may be
compactified in a number of ways. One particular compactification
of G/H is called wonderful , which means that its boundary is a
union of smooth G -stable divisors with smooth transveral
intersections.



The wonderful compactifications of GL(n,C)/O(n,C) and
GL(2n,C)/Sp(2n,C)

When H = O(n,C) or Sp(2n,C), the other G -orbits on the
wonderful compactification of G/H are (spherical) homogeneous
spaces of the form G/Hµ, where µ = (µ1, . . . , µk) is a composition
of n, i.e. an ordered sequence of positive integers whose sum is n.

The group Hµ is isomorphic to

(O(µ1,C)× . . .× O(µk ,C)) n U

or
(Sp(2µ1,C)× . . .× Sp(2µk ,C)) n U,

where U is the unipotent radical of the standard parabolic
subgroup corresponding to the composition µ.
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Example

In the orthogonal case GL(5,C)/O(5,C), for µ = (3, 2), Hµ

consists of matrices of the form
A 0

* * *
* * *

B


with A ∈ O(3,C) and B ∈ O(2,C).



B-orbits on G/Hµ

When H = O(n,C), the B-orbits on G/Hµ are parametrized by
µ-involutions, which are permutations w ∈ Sn such that when we
view the µ-blocks of the one-line notation for w as permutations
(by considering only the relative order of the entries), each is an
involution.

For example, for µ = (4, 2), the permutations [1642|53] and
[4612|35] are µ-involutions, since 1642↔ 1432 and 53↔ 21, and
since 4612↔ 3412 and 35↔ 12.

When H = Sp(2n,C), B-orbits on G/Hµ are parametrized by
µ-fpf-involutions, defined similarly.
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W -sets of B-orbit closures on G/Hµ

For the case H = O(n,C), Can-Joyce more generally give a
similarly explicit description of the W -set of the closed B-orbit Yµ
for any partition µ of n, generalizing Theorem 1.

Can-Joyce-W have further generalized this result to describe
explicitly the W -set of any B-orbit closure on GL(n,C)/Hµ for any
µ, further generalizing Theorem 1.

Additionally, for the case H = Sp(2n,C), Can-Joyce-W have
described explicitly the W -set of any B-orbit closure on
GL(2n,C)/Hµ for any µ, generalizing Theorem 2.
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Cohomological formulas

The closed G -orbit on X = G/H is isomorphic to G/B, so the
inclusion

i : G/B ↪→ X

gives rise to a restriction homomorphism

H∗(X )
i∗−→ H∗(G/B).

Given any B-orbit closure Y on X , one can ask for a formula for
i∗([Y ]) either as a sum of Schubert cycles, or perhaps as a
polynomial in the Chern classes xi of (duals to) tautological
subquotients which are known to generate H∗(G/B).
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A theorem of Brion

Theorem (Brion)

In the notation of the previous slide,

i∗([Y ]) =
∑

w∈W (Y )

2D(w)[Xw−1
],

where D(w) is the number of double edges in any path in the
reverse weak order graph from the bottom vertex up to Y , the
product of whose edge labels is w.

Note: Combining with the previous theorems, this gives i∗([Y ])
very explicitly as a sum of Schubert cycles for any B-orbit closure
Y on G/H. One can also give polynomials in the xi ’s by summing
the relevant Schubert polynomials Sw−1(x1, . . . , xn) (each
multiplied by the appropriate power of 2).
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Alternative (factored) formulas

Can-Joyce conjectured that in the case of H = O(n,C) and the
closed B-orbit on G/H, the sum of Schubert polynomials factors
nicely as ∑

w∈W (Y(2n))

Sw−1(x1, . . . , x2n) =

x1 . . . xn
∏

1≤i<j≤n
(xi + xj)(xi + x2n+1−j),

or

∑
w∈W (Y(2n+1))

Sw−1(x1, . . . , x2n+1) =

x1 . . . xn
∏

1≤i<j≤n
(xi + xj)(xi + x2n+2−j)

∏
1≤i≤n

(xi + xn+1).
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A proof of the conjecture

B-orbits on G/H are in bijection with H-orbits on G/B, via

B · gH ↔ H · g−1B.

Let πα : G/B → G/Pα be the natural projection. The covering
relations for the weak order on H\(G/B) are

Y ′ = sα · Y

if Y ′ = π−1α (πα(Y )).
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Computing the S-equivariant class of the closed orbit

Theorem (W)

Let S be a maximal torus of H, for H = O(2n,C), O(2n + 1,C),
or Sp(2n,C). The S-equivariant class of the closed H-orbit on
G/B is represented by

[Y(2n)] = 2nx1 . . . xn
∏

1≤i<j≤n
(xi + xj)(xi + x2n+1−j),

[Y(2n+1)] = 2nx1 . . . xn
∏

1≤i<j≤n
(xi+xj)(xi+x2n+2−j)

∏
1≤i≤n

(xi+xn+1),

and
[Z(2n)] =

∏
1≤i<j≤n

(xi + xj)(xi + x2n+1−j),

in each respective case.
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Comments on proof

1. The closed H-orbit Y on G/B is smooth, being isomorphic to
the flag variety for H.

2. This allows us to compute the restriction of [Y ]S to the
S-fixed locus, using the self-intersection formula. By the
localization theorem for equivariant cohomology, this
restriction determines [Y ]S uniquely, and any polynomial in
the generators x , y which localizes correctly represents [Y ]S .

3. The given polynomials localize correctly.
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Generalizations to other G -orbits

This approach applies equally well to the closed Hµ-orbit on G/B
for any partition µ, which allows us to give (nicely factoring)
polynomial representatives of the torus-equivariant classes of these
orbits as well. Specializing y -variables to 0, this gives additionally
a formula for the ordinary class of the orbit, equal (as polynomials)
to the corresponding sum of Schubert polynomials given by our
generalizations of Theorems 1-2.



Example 1
For H = O(5,C), µ = (2, 3), the Lie algebra of the torus of G is of
the form

diag(x1, x2, | x3, x4, x5),

while the Lie algebra of the torus of Hµ is of the form

diag(y1,−y1, | y2, 0,−y2).

The equivariant class of the closed Hµ-orbit on G/B is

2(x1 − y2)x1(x1 + y2)(x2 − y2)x2(x2 + y2)(x3 + x4)x1x3,

or

2x2
1x2x3(x1 − y2)(x1 + y2)(x2 − y2)(x2 + y2)(x3 + x4).

Specializing the y variables to 0, this gives∑
w∈W (Y(2,3))

Sw−1(x1, . . . , x5) = x4
1x3

2x3(x3 + x4).
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Specializing the y variables to 0, this gives∑
w∈W (Y(2,3))

Sw−1(x1, . . . , x5) = x4
1x3

2x3(x3 + x4).



Example 2

For H = Sp(6,C), µ = (4, 2), we have tori
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)
(x1 + x2)(x1 + x3).

Setting y variables to 0, this gives∑
w∈W (Z(4,2))

Sw−1(x1, . . . , x6) = x2
1x2

2x2
3x2

4 (x1 + x2)(x1 + x3).
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