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Basic setup

v

G = GL(n,C)

» B = lower-triangular Borel

v

T = diagonal maximal torus
W =Ng(T)/T =S5,
H = O(n,C) or Sp(n,C) if nis even

v

v



The weak order on B-orbit closures on G/H

Suppose that Y, Y’ are two B-orbit closures on G/H. The
covering relations for what is called the weak order on B\(G/H)
are as follows: Y’ covers Y if and only if Y/ = P,Y # Y for some
simple root «.



Combinatorial models of B\(G/H) in our examples

When H = O(n, C), orbits are parametrized by involutions in S,.
The lone closed orbit corresponds to wy, and the dense orbit to the
identity.
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When H = Sp(2n, C), orbits are parametrized by fixed point-free
involutions in Sa,. The lone closed orbit corresponds again to wy,
and the dense orbit to (1,2)(3,4)...(2n—1,2n).



Combinatorial models of B\(G/H) in our examples

When H = O(n, C), orbits are parametrized by involutions in S,.
The lone closed orbit corresponds to wy, and the dense orbit to the
identity.

When H = Sp(2n, C), orbits are parametrized by fixed point-free
involutions in Sa,. The lone closed orbit corresponds again to wy,
and the dense orbit to (1,2)(3,4)...(2n—1,2n).

The weak order is understood very explicitly on the level of these
parametrizations.



Example 1: (G, H) = (GL(5,C), O(5,C))
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Example 2: (G, H) = (GL(6,C), Sp(6,C))
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The W-set of an orbit closure

Let Y be a B-orbit closure on G/H, and consider the set

W(Y) C W of distinct elements obtained by taking each path in
the weak order graph from the dense orbit up to Y/, and for each
such path, taking the products of all edge labels. We call this the
W-set of Y.
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The W-set of an orbit closure

Let Y be a B-orbit closure on G/H, and consider the set

W(Y) C W of distinct elements obtained by taking each path in
the weak order graph from the dense orbit up to Y/, and for each
such path, taking the products of all edge labels. We call this the
W-set of Y.

Let Y(2n41) or Y(2p) be the unique closed B-orbit when H is the
orthogonal group. Let Z(3,) be the unique closed B-orbit when H
is the symplectic group.

QZ Can we describe W(Y(2n+1)), W( Y(2n))v and W(Z(2n))
explicitly?



A characterization of W(Y(2n)) and W(Y{(2,41))

Theorem 1 (Can-Joyce)

When H = O(n,C), the W-set of the unique closed orbit consists
of all permutations in S,, such that, in the one-line notation,
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A characterization of W(Y(2n)) and W(Y{(2,41))

Theorem 1 (Can-Joyce)

When H = O(n,C), the W-set of the unique closed orbit consists
of all permutations in S,, such that, in the one-line notation,

> n appears before 1, with nothing in between;

» n— 1 appears before 2, with nothing except possibly 1, n in
between;

> n — 2 appears before 3, with nothing except possibly
1,2, n— 1, n in between;

> etc...
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Examples
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Examples

> W(Ys) = {312,231},
> W(Y, 4))_{4132,3412,3241},

{51423, 45123,42513,42351,51342,35142,34512, 34251},



Examples

> W(Y3) = {312,231},

> W(Ya) = {4132, 3412, 3241},

> W(Ys) =
{51423,45123,42513,42351,51342,35142, 34512, 34251},

> etc...



A characterization of W(Z,,))

Theorem 2 (Can-Joyce-W)

When H = Sp(2n,C), the W-set of the unique closed orbit consists
of all permutations in Sy, such that, in the one-line notation,
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A characterization of W(Z,,))

Theorem 2 (Can-Joyce-W)

When H = Sp(2n,C), the W-set of the unique closed orbit consists
of all permutations in Sy, such that, in the one-line notation,

» 1 appears before 2n, with nothing in between;
> 2 appears before 2n — 1, with nothing in between;
> 3 appears before 2n — 2, with nothing in between;

> etc...



Examples

> W(Z4y) = {1423,2314},



Examples

> W(Zuy) = {1423,2314},
» W(Ze)) =
(162534, 163425, 251634, 253416, 341625, 342516},



Examples

> W(Zuy) = {1423,2314},
» W(Ze)) =
(162534, 163425, 251634, 253416, 341625, 342516},

> etc...



A generalization

G/H is a non-compact homogeneous space. It may be
compactified in a number of ways. One particular compactification
of G/H is called wonderful, which means that its boundary is a
union of smooth G-stable divisors with smooth transveral
intersections.



The wonderful compactifications of GL(n,C)/O(n,C) and
GL(2n,C)/Sp(2n,C)

When H = O(n,C) or Sp(2n,C), the other G-orbits on the
wonderful compactification of G/H are (spherical) homogeneous
spaces of the form G/H,,, where ;1 = (u1, ..., k) is a composition
of n, i.e. an ordered sequence of positive integers whose sum is n.



The wonderful compactifications of GL(n,C)/O(n,C) and
GL(2n,C)/Sp(2n,C)

When H = O(n,C) or Sp(2n,C), the other G-orbits on the
wonderful compactification of G/H are (spherical) homogeneous
spaces of the form G/H,,, where ;1 = (u1, ..., k) is a composition
of n, i.e. an ordered sequence of positive integers whose sum is n.

The group H,, is isomorphic to
(O(11,C) x ... x O(uk,C)) x U

or
(Sp(2p11, C) x ... x Sp(2puk, C)) x U,

where U is the unipotent radical of the standard parabolic
subgroup corresponding to the composition p.



Example

In the orthogonal case GL(5,C)/O(5,C), for u = (3,2), H,
consists of matrices of the form

A 0
X X *
* X * B

with A€ O(3,C) and B € 0(2,C).



B-orbits on G/H,

When H = O(n, C), the B-orbits on G/H,, are parametrized by
p-involutions, which are permutations w € S, such that when we
view the p-blocks of the one-line notation for w as permutations

(by considering only the relative order of the entries), each is an
involution.
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B-orbits on G/H,

When H = O(n, C), the B-orbits on G/H,, are parametrized by
p-involutions, which are permutations w € S, such that when we
view the p-blocks of the one-line notation for w as permutations
(by considering only the relative order of the entries), each is an
involution.

For example, for = (4,2), the permutations [1642|53] and
[4612|35] are p-involutions, since 1642 <+ 1432 and 53 < 21, and
since 4612 <+ 3412 and 35 < 12.

When H = Sp(2n,C), B-orbits on G/H,, are parametrized by
u-fpf-involutions, defined similarly.
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W-sets of B-orbit closures on G/H,

For the case H = O(n, C), Can-Joyce more generally give a
similarly explicit description of the W-set of the closed B-orbit Y,
for any partition u of n, generalizing Theorem 1.

Can-Joyce-W have further generalized this result to describe
explicitly the W-set of any B-orbit closure on GL(n,C)/H,, for any
w, further generalizing Theorem 1.

Additionally, for the case H = Sp(2n, C), Can-Joyce-W have
described explicitly the W-set of any B-orbit closure on
GL(2n,C)/H,, for any i, generalizing Theorem 2.



Cohomological formulas

The closed G-orbit on X = G/H is isomorphic to G/B, so the
inclusion
i:G/B—=X

gives rise to a restriction homomorphism

H*(X) - H*(G/B).



Cohomological formulas

The closed G-orbit on X = G/H is isomorphic to G/B, so the
inclusion
i:G/B—=X

gives rise to a restriction homomorphism

H*(X) - H*(G/B).

Given any B-orbit closure Y on X, one can ask for a formula for
i*([Y]) either as a sum of Schubert cycles, or perhaps as a
polynomial in the Chern classes x; of (duals to) tautological
subquotients which are known to generate H*(G/B).



A theorem of Brion

Theorem (Brion)

In the notation of the previous slide,

I*([Y]) _ Z 2D(W)[XW71]’

weW(Y)

where D(w) is the number of double edges in any path in the
reverse weak order graph from the bottom vertex up to Y, the
product of whose edge labels is w.



A theorem of Brion

Theorem (Brion)

In the notation of the previous slide,

I*([Y]) _ Z 2D(W)[XW71]’

weW(Y)

where D(w) is the number of double edges in any path in the
reverse weak order graph from the bottom vertex up to Y, the
product of whose edge labels is w.

Note: Combining with the previous theorems, this gives i*([Y])
very explicitly as a sum of Schubert cycles for any B-orbit closure
Y on G/H. One can also give polynomials in the x;'s by summing
the relevant Schubert polynomials &,,-1(x1,. .., xp) (each
multiplied by the appropriate power of 2).




Alternative (factored) formulas

Can-Joyce conjectured that in the case of H = O(n,C) and the
closed B-orbit on G/H, the sum of Schubert polynomials factors
nicely as

Z Sp-1(x1,...,x2n) =

we W( y(2n))

X1 ... Xn H (xi + %) (Xi + x2nt1-j),
1<i<j<n

or



Alternative (factored) formulas

Can-Joyce conjectured that in the case of H = O(n,C) and the
closed B-orbit on G/H, the sum of Schubert polynomials factors

nicely as
Z Sp-1(x1,...,x2n) =
weW(Yizn))
X1 Xp H (xi + x7)(xi + x2n+1—)),
1<i<j<n
or

Z 6‘/|/71(X17---,X2n+1):

we W( Y(2n+1))

X1 ...Xp H (X,‘ + Xj)(X,‘ + X2n+2fj) H (X,' + Xn+1).

1<i<j<n 1<i<n



A proof of the conjecture

B-orbits on G/H are in bijection with H-orbits on G/B, via

B-gH+ H-g B



A proof of the conjecture

B-orbits on G/H are in bijection with H-orbits on G/B, via

B-gH+ H-g B

Let 7o : G/B — G/P, be the natural projection. The covering
relations for the weak order on H\(G/B) are

Y =s,-Y

if Y =71 (7a(Y)).



Computing the S-equivariant class of the closed orbit

Theorem (W)

Let S be a maximal torus of H, for H= O(2n,C), O(2n+1,C),
or Sp(2n,C). The S-equivariant class of the closed H-orbit on
G /B is represented by

[Y(Zn)] = 2nX1 ... Xp H (X,‘ + XJ‘)(X,' + X2,,+1_J'),
1<i<j<n



Computing the S-equivariant class of the closed orbit

Theorem (W)

Let S be a maximal torus of H, for H= O(2n,C), O(2n+1,C),
or Sp(2n,C). The S-equivariant class of the closed H-orbit on
G /B is represented by

[Y(Zn)] = 2nX1 ... Xp H (X,‘ + XJ‘)(X,' + X2,,+1_J'),
1<i<j<n

Vel =2 ...xa [ (itx)(itxenra—j) [ (itxar1),
1<i<j<n 1<i<n



Computing the S-equivariant class of the closed orbit

Theorem (W)

Let S be a maximal torus of H, for H= O(2n,C), O(2n+1,C),
or Sp(2n,C). The S-equivariant class of the closed H-orbit on
G /B is represented by

[Y(Zn)] = 2nX1 ... Xp H (X,‘ + XJ‘)(X,' + X2,,+1_J'),
1<i<j<n

[Y(2n+1)] =2"x1... X H (X,'—I—Xj)(X,'—i—Xz,,Jrz,j) H (Xi+Xn+1),

1<i<j<n 1<i<n

and
[Zoml = I i+ +2n11-)),

1<i<j<n

in each respective case.
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1. The closed H-orbit Y on G/B is smooth, being isomorphic to
the flag variety for H.
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2. This allows us to compute the restriction of [Y]s to the
S-fixed locus, using the self-intersection formula. By the
localization theorem for equivariant cohomology, this
restriction determines [Y]s uniquely, and any polynomial in
the generators x, y which localizes correctly represents [Y]s.



Comments on proof

1. The closed H-orbit Y on G/B is smooth, being isomorphic to
the flag variety for H.

2. This allows us to compute the restriction of [Y]s to the
S-fixed locus, using the self-intersection formula. By the
localization theorem for equivariant cohomology, this
restriction determines [Y]s uniquely, and any polynomial in
the generators x, y which localizes correctly represents [Y]s.

3. The given polynomials localize correctly.



Generalizations to other G-orbits

This approach applies equally well to the closed H,-orbit on G/B
for any partition p, which allows us to give (nicely factoring)
polynomial representatives of the torus-equivariant classes of these
orbits as well. Specializing y-variables to 0, this gives additionally
a formula for the ordinary class of the orbit, equal (as polynomials)
to the corresponding sum of Schubert polynomials given by our
generalizations of Theorems 1-2.



Example 1

For H= 0(5,C), u = (2,3), the Lie algebra of the torus of G is of
the form

diag(x1, x2, | x3, x4, x5),

while the Lie algebra of the torus of H,, is of the form

diag(y17 —Y1, ’ Y2, 07 —}’2)
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For H= 0(5,C), u = (2,3), the Lie algebra of the torus of G is of
the form

diag(x1, x2, | x3, x4, x5),

while the Lie algebra of the torus of H,, is of the form
diag(y17 —Y1, ’ Y2, 07 —}’2)
The equivariant class of the closed H,-orbit on G/B is
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Example 1

For H= 0(5,C), u = (2,3), the Lie algebra of the torus of G is of
the form

diag(x1, x2, | x3, x4, x5),

while the Lie algebra of the torus of H,, is of the form
diag(y1, —y1, | ¥2,0,—y2).
The equivariant class of the closed H,-orbit on G/B is
(x1 = y2)xa(x1 + y2) (2 — y2)x2 (32 + y2)(x3 + Xxa)x1 %3,
or
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Example 1

For H= 0(5,C), u = (2,3), the Lie algebra of the torus of G is of
the form

diag(x1, x2, | x3, Xa, x5),
while the Lie algebra of the torus of H,, is of the form
diag(y1, —y1, | ¥2,0,—y2).
The equivariant class of the closed H,-orbit on G/B is
(x1 = y2)xa(x1 + y2) (2 — y2)x2 (32 + y2)(x3 + Xxa)x1 %3,
or
2xixex3(x1 — y2) (xa + y2) (2 — y2) (%2 + y2) (x3 + xa).

Specializing the y variables to 0, this gives

Z S,-1(x1,...,x5) :Xfx23X3(X3—|—X4).
weW(Y(23))



Example 2

For H= 5p(6,C), i = (4,2), we have tori
diag(x1, x2, x3, X4, | X5, X6)

and
diag()/1;y27 —Y2, —¥1, ’ Y3, _}/3)
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For H= 5p(6,C), i = (4,2), we have tori
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and
diag(y17y27_y27_y17 ’)/37_}/3)-
We get

(H(Xi + y3)(xi — y3)> (x1 4 x0)(x1 + x3).

i=1



Example 2

For H= 5p(6,C), i = (4,2), we have tori
diag(x1, x2, x3, X4, | X5, X6)

and
diag()/1;y27 —Y2, —¥1, ’ Y3, _}/3)

We get

i=1

(H(Xi + y3)(xi — y3)> (x1 4 x0)(x1 + x3).

Setting y variables to 0, this gives

Z Gu-1(X1,...,x6) = x2x3x3x3(x1 + x2)(x1 + x3).

we W(Z(472))



