Nonnegative sections and sums of squares

Gregory G. Smith

14 April 2013

Fundamental Problem

- A polynomial $f \in S := \mathbb{R}[x_0, ..., x_n]$ is • *nonnegative* if $f(x) \ge 0$ for all $x \in \mathbb{R}^n$,
- a sum of squares if $f = g_1^2 + \dots + g_k^2$ for some $g_1, \dots, g_k \in S$.

MOTZKIN(1965): The nonnegative polynomial $x_0^4x_1^2 + x_0^2x_1^4 + x_2^6 - 3x_0^2x_1^2x_2^2$ is not a sum of squares.

PROBLEM: When is nonnegativity the same as being a sum of squares?

The Solution?

HILBERT(1888): Let *S* be the coordinate ring of \mathbb{P}^n ; *S* has the \mathbb{N} -grading induced by $\deg(x_i) = 1$. If either

- n = 1 (univariate nonhomogeneous),
- 2d = 2 (quadratic forms), or
- n = 2, 2d = 4 (ternary quartics),

then each nonnegative $f \in S_{2d}$ is a sum of squares; else there are nonnegative $f \in S_{2d}$ that is not sums of squares.

Convex Algebraic Geometry

Fix a nondegenerate $X \subseteq \mathbb{P}^n$ such that $X(\mathbb{R})$ is Zariski dense. Let $\mathcal{O}_X(D)$ be the associated very ample line bundle.

- A section $s \in H^0(X, \mathcal{O}_X(2D))$ is
- *nonnegative* if its evaluation at each point in $X(\mathbb{R})$ is nonnegative,
- a sum of squares if $s = \mu(t_1^2) + \dots + \mu(t_k^2)$ for some $t_1, \dots, t_k \in V := H^0(X, \mathcal{O}_X(D))$ where $\mu : \operatorname{Sym}^2(V) \to H^0(X, \mathcal{O}_X(2D))$.

Solution!

LEMMA: The collection of nonnegative sections (resp. sums of squares) form a closed convex cone $P_{X,2D}$ (resp. $\Sigma_{X,2D}$).

REMARK: $\Sigma^*_{X,2D}$ is a spectrahedron.

THEOREM(Blekherman-Smith-Velasco): We have $P_{X,2D} = \Sigma_{X,2D}$ if and only if deg(X) = 1 + codim(X), i.e. (X, D) is a variety of minimal degree.

Toric Examples

DEL PEZZO-BERTINI(1907): A variety of minimal degree is a cone over a smooth such variety. A smooth variety of minimal degree is either

- a quadric hypersurface
- rational normal scroll, or
- the Veronese surface $\mathbb{P}^2 \subseteq \mathbb{P}^5$.

The associated Cox rings yield many new examples in which $P_{X,2D} = \Sigma_{X,2D}$.