Nonnegative sections and sums of squares

Gregory G. Smith

14 April 2013

Fundamental Problem

A polynomial $f \in S:=\mathbb{R}\left[x_{0}, \ldots, x_{n}\right]$ is

- nonnegative if $f(x) \geq 0$ for all $x \in \mathbb{R}^{n}$,
- a sum of squares if $f=g_{1}^{2}+\cdots+g_{k}^{2}$ for some $g_{1}, \ldots, g_{k} \in S$.

MOTZKIN(1965): The nonnegative
polynomial $x_{0}^{4} x_{1}^{2}+x_{0}^{2} x_{1}^{4}+x_{2}^{6}-3 x_{0}^{2} x_{1}^{2} x_{2}^{2}$ is not a sum of squares.

PROBLEM: When is nonnegativity the same as being a sum of squares?

The Solution?

HILBERT(1888): Let S be the coordinate ring of $\mathbb{P}^{n} ; S$ has the \mathbb{N}-grading induced by $\operatorname{deg}\left(x_{i}\right)=1$. If either

- $n=1$ (univariate nonhomogeneous),
- $2 d=2$ (quadratic forms), or
- $n=2,2 d=4$ (ternary quartics),
then each nonnegative $f \in S_{2 d}$ is a sum of squares; else there are nonnegative $f \in S_{2 d}$ that is not sums of squares.

Convex Algebraic Geometry

Fix a nondegenerate $X \subseteq \mathbb{P}^{n}$ such that $X(\mathbb{R})$ is Zariski dense. Let $\mathscr{O}_{X}(D)$ be the associated very ample line bundle.

A section $s \in H^{0}\left(X, O_{X}(2 D)\right)$ is

- nonnegative if its evaluation at each point in $X(\mathbb{R})$ is nonnegative,
- a sum of squares if $s=\mu\left(t_{1}^{2}\right)+\cdots+\mu\left(t_{k}^{2}\right)$ for some $t_{1}, \ldots, t_{k} \in V:=H^{0}\left(X, \mathcal{O}_{X}(D)\right)$ where $\mu: \operatorname{Sym}^{2}(V) \rightarrow H^{0}\left(X, \mathcal{O}_{X}(2 D)\right)$.

Solution!

LEMMA: The collection of nonnegative sections (resp. sums of squares) form a closed convex cone $P_{X, 2 D}$ (resp. $\Sigma_{X, 2 D}$).

REMARK: $\Sigma_{X, 2 D}^{*}$ is a spectrahedron.
THEOREM(Blekherman-Smith-Velasco): We have $P_{X, 2 D}=\Sigma_{X, 2 D}$ if and only if $\operatorname{deg}(X)=1+\operatorname{codim}(X)$, i.e. (X, D) is a variety of minimal degree.

Toric Examples

DEL PEZZO-BERTINI(1907): A variety of minimal degree is a cone over a smooth such variety. A smooth variety of minimal degree is either

- a quadric hypersurface
- rational normal scroll, or
- the Veronese surface $\mathbb{P}^{2} \subseteq \mathbb{P}^{5}$.

The associated Cox rings yield many new examples in which $P_{X, 2 D}=\Sigma_{X, 2 D}$.

