Orthogonal groups $\mathcal{O}(n)$ over GF(2) as automorphisms

Young-Jo Kwak

April, 2013

Let (V, Q) be a quadratic vector space over \mathbb{K} .

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^t x Sx = \sum s_{ij} x_i x_j = \sum s_{ii} x_i^2 + 2 \sum_{i < j} s_{ij} x_i x_j.$

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \left\{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \right\}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \left\{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \right\}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define S as: S(x, y) = Q(x + y) - Q(x) - Q(y).

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define *S* as: S(x, y) = Q(x + y) - Q(x) - Q(y).*Q* is diagonal and *S* is alternating.

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{\gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V\}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{M \in GL(n, \mathbb{K}) : {}^{t}MSM = S\}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define S as: S(x, y) = Q(x + y) - Q(x) - Q(y).Q is diagonal and S is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define S as: S(x, y) = Q(x + y) - Q(x) - Q(y).Q is diagonal and S is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

 $\mathcal{O}(n) := \mathcal{O}(\mathbb{K}^n, I).$

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define *S* as: S(x, y) = Q(x + y) - Q(x) - Q(y).*Q* is diagonal and *S* is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

$$\mathcal{O}(n) := \mathcal{O}(\mathbb{K}^n, I).$$

$$\mathcal{O}(n) = \operatorname{Aut}(\mathfrak{o}(n)) \text{ over } \mathbb{C}, \mathbb{R}.$$

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{ \gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V \}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{ M \in GL(n, \mathbb{K}) : {}^{t}MSM = S \}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define S as: S(x, y) = Q(x + y) - Q(x) - Q(y).Q is diagonal and S is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

 $\mathcal{O}(n) := \mathcal{O}(\mathbb{K}^n, I).$ $\mathcal{O}(n) = \operatorname{Aut}(\mathfrak{o}(n)) \text{ over } \mathbb{C}, \mathbb{R}.$ How about another field?

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{\gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V\}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{M \in GL(n, \mathbb{K}) : {}^{t}MSM = S\}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define *S* as: S(x, y) = Q(x + y) - Q(x) - Q(y).*Q* is diagonal and *S* is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

 $\mathcal{O}(n) := \mathcal{O}(\mathbb{K}^n, I).$ $\mathcal{O}(n) = \operatorname{Aut}(\mathfrak{o}(n)) \text{ over } \mathbb{C}, \mathbb{R}.$ How about another field? The answer is Yes if it is over *GF*(2).

Let (V, Q) be a quadratic vector space over \mathbb{K} . $\mathcal{O}(V, Q) := \{\gamma \in GL(V) : Q(\gamma x) = Q(x) \ \forall x \in V\}$ where $Q(x) = S(x, x) = {}^{t}xSx = \sum s_{ij}x_{i}x_{j} = \sum s_{ii}x_{i}^{2} + 2\sum_{i < j}s_{ij}x_{i}x_{j}.$ $\mathcal{O}(\mathbb{K}^{n}, S) = \{M \in GL(n, \mathbb{K}) : {}^{t}MSM = S\}$ where 2S(x, y) = Q(x + y) - Q(x) - Q(y).Due to 2 = 0 in char \mathbb{K} = 2, re-define S as: S(x, y) = Q(x + y) - Q(x) - Q(y).Q is diagonal and S is alternating.

Thus, orthogonal group $\mathcal{O}(V, Q)$ is the automorphisms preserving (V, Q).

 $\begin{aligned} \mathcal{O}(n) &:= \mathcal{O}(\mathbb{K}^n, I). \\ \mathcal{O}(n) &= \operatorname{Aut}(\mathfrak{o}(n)) \text{ over } \mathbb{C}, \mathbb{R}. \\ \text{How about another field?} \\ \text{The answer is Yes if it is over } GF(2). \\ \text{This is a verification of Steinberg 1961 that } \operatorname{Aut}(\mathfrak{o}(n)) \text{ over a square free field} \\ & \text{ is simple, with non-simple exception } n = 5. \end{aligned}$

Combinatorial Basis C

Example: n = 5

Combinatorial Basis C

Example: n = 5

Orthogonal groups $\mathcal{O}(n)$ over GF(2) as automorp

Combinatorial algebras $\mathfrak{C}(n)$

Df. Combinatorial basis \mathfrak{C} over a fixed commutative ring *K*

$$\mathfrak{C} = \bigcup_{\substack{-1 \le i \le n-3}} \mathfrak{C}_{[i]} \text{ where } \mathfrak{C}_{[-1]} = \{v_1, \dots, v_n\} \text{ and for } 0 \le i \le n-3$$
$$\mathfrak{C}_{[i]} = \{X_1, \dots, X_{\binom{n}{i+2}} : \text{ each } X_j \text{ is an } (i+2) \text{ choice of dots in } \mathfrak{C}_{[-1]}\}$$

Combinatorial algebras $\mathfrak{C}(n)$

Df. Combinatorial basis \mathfrak{C} over a fixed commutative ring *K*

$$\mathfrak{C} = \bigcup_{\substack{-1 \le i \le n-3 \\ \mathfrak{C}[i]}} \mathfrak{C}_{[i]} \text{ where } \mathfrak{C}_{[-1]} = \{v_1, \dots, v_n\} \text{ and for } 0 \le i \le n-3$$
$$\mathfrak{C}_{[i]} = \{X_1, \dots, X_{\binom{n}{i+2}} : \text{ each } X_j \text{ is an } (i+2) \text{ choice of dots in } \mathfrak{C}_{[-1]}\}$$
$$\text{Let } X = \{v_{x(1)}, \dots, v_{x(s)}\}, Y = \{v_{y(1)}, \dots, v_{y(t)}\} \in \mathfrak{C}. \text{ Then } X \cdot Y \text{ is:}$$
$$X \cdot Y := \begin{cases} X \cup Y \setminus X \cap Y & \text{if } X \cap Y = \{\cdot\} \text{ for some dot } v_{x(i)} = v_{y(j)} \\ 0 & \text{ otherwise} \end{cases}$$

Combinatorial algebras $\mathfrak{C}(n)$

Df. Combinatorial basis \mathfrak{C} over a fixed commutative ring *K*

$$\mathfrak{C} = \bigcup_{\substack{-1 \le i \le n-3 \\ \mathfrak{C}[i]}} \mathfrak{C}_{[i]} \text{ where } \mathfrak{C}_{[-1]} = \{v_1, \dots, v_n\} \text{ and for } 0 \le i \le n-3$$
$$\mathfrak{C}_{[i]} = \{X_1, \dots, X_{\binom{n}{i+2}} : \text{ each } X_j \text{ is an } (i+2) \text{ choice of dots in } \mathfrak{C}_{[-1]}\}$$
$$\text{Let } X = \{v_{x(1)}, \dots, v_{x(s)}\}, Y = \{v_{y(1)}, \dots, v_{y(t)}\} \in \mathfrak{C}. \text{ Then } X \cdot Y \text{ is:}$$
$$X \cdot Y := \begin{cases} X \cup Y \setminus X \cap Y & \text{if } X \cap Y = \{\cdot\} \text{ for some dot } v_{x(i)} = v_{y(j)} \\ 0 & \text{otherwise} \end{cases}$$

 $\mathfrak{C}(n) = \bigoplus_{\substack{-1 \le i \le n-3 \\ i \le n-3}} L_i$ is a non-associative commutative *K*-algebra where each L_i is a grading subspace spanned by $\mathfrak{C}_{[i]}$. If *K* is a field of char*K* = 2, $\mathfrak{C}(n) = G(n) \bigotimes_{\mathbb{F}_2} K$ where G(n) are simple Lie algebras over GF(2) introduced by Kaplansky in 1982. We assume K = GF(2) so that $\mathfrak{C}(n) = G(n)$.

 $\mathbf{X} \cdot \mathbf{Y} = \mathbf{Z}$

Block multiplication in $\mathfrak{C}(10)$

	L-1	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7
L-1	0	L_{-1}	L_0	L_1	L_2	L_3	L_4	L_5	L_6
L_0	L_{-1}	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7
L_1	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7	0
L_2	L_1	L_2	L_3	L_4	L_5	L_6	L_7	0	0
L_3	L_2	L_3	L_4	L_5	L_6	L_7	0	0	0
$ L_4 $	L_3	L_4	L_5	L_6	L_7	0	0	0	0
L_5	L_4	L_5	L_6	L_7	0	0	0	0	0
<i>L</i> ₆	L_5	L_6	L_7	0	0	0	0	0	0
L_7	L_6	L_7	0	0	0	0	0	0	0

where $L_i \cdot L_j = L_{i+j}$ if $-1 \le i+j \le n-3$ and = 0 otherwise.

Block multiplication in $\mathfrak{C}(10)$

	L-1	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7
L-1	0	L-1	L_0	L_1	L_2	L_3	L_4	L_5	L_6
L_0	L-1	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7
L_1	L_0	L_1	L_2	L_3	L_4	L_5	L_6	L_7	0
L_2	L_1	L_2	L_3	L_4	L_5	L_6	L_7	0	0
L_3	L_2	L_3	L_4	L_5	L_6	L_7	0	0	0
L_4	L_3	L_4	L_5	L_6	L_7	0	0	0	0
L_5	L_4	L_5	L_6	L_7	0	0	0	0	0
L_6	L_5	L_6	L_7	0	0	0	0	0	0
L_7	L_6	L_7	0	0	0	0	0	0	0

where $L_i \cdot L_j = L_{i+j}$ if $-1 \le i+j \le n-3$ and = 0 otherwise.

 $L_0 = \mathfrak{o}(n)$ is a simple subalgebra.

Let
$$\alpha \in \mathcal{O}(5)$$
 with respect to $\mathfrak{C}_{[-1]} = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \end{pmatrix}$
$$= \begin{pmatrix} \alpha(v_1) & \alpha(v_2) & \alpha(v_3) & \alpha(v_4) & \alpha(v_5) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Let
$$\alpha \in \mathcal{O}(5)$$
 with respect to $\mathfrak{C}_{[-1]} = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \end{pmatrix}$
$$= \begin{pmatrix} \alpha(v_1) & \alpha(v_2) & \alpha(v_3) & \alpha(v_4) & \alpha(v_5) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix}.$$

Then
$$\alpha \iff \alpha \oplus \gamma \in \operatorname{Aut}(K(5))$$
 split automorphism
where $K(5) = L_{-1} \oplus L_0$
and $\gamma \in \operatorname{Aut}(L_0)$ with $\gamma(B) = {}^t \alpha B \alpha$ for all $B \in \mathfrak{o}(5)$.

 $\stackrel{\alpha \oplus \gamma}{\longrightarrow}$

$$\gamma(e) = e + f + g + h + j$$

$$\gamma(j) = e + f + g + h + i$$

$$\gamma(f) = e + g + h + i + j$$

We have $[\gamma(j), \gamma(f)] = \gamma(e) = E_p + E_p^{\perp}$ where $E_p = [J_p, F_p^{\perp}] + [J_p^{\perp}, F_p]$.

We have $[\gamma(j), \gamma(f)] = \gamma(e) = E_p + E_p^{\perp}$ where $E_p = [J_p, F_p^{\perp}] + [J_p^{\perp}, F_p]$.

Let $p = v_2$. Then $E_p = j + h + e$.

We have
$$[\gamma(j), \gamma(f)] = \gamma(e) = E_p + E_p^{\perp}$$
 where $E_p = [J_p, F_p^{\perp}] + [J_p^{\perp}, F_p]$.

Let
$$p = v_2$$
. Then $E_p = j + h + e$.

Make orientation for $j = \{v_2, v_3\}$.

We have
$$[\gamma(j), \gamma(f)] = \gamma(e) = E_p + E_p^{\perp}$$
 where $E_p = [J_p, F_p^{\perp}] + [J_p^{\perp}, F_p]$.

Let
$$p = v_2$$
. Then $E_p = j + h + e$.

Make orientation for $j = \{v_2, v_3\}$.

$$j = [f, e] + [h, i] + [i, h] \text{ in } \gamma(e) = [\gamma(j), \gamma(f)]$$

where $[f, e] = [\{v_3, v_5\}, \{v_5, v_2\}]$ is in $[J_p^{\perp}, F_p]$
 $[h, i] = [\{v_2, v_4\}, \{v_4, v_3\}]$ is in $[J_p, F_p^{\perp}]$
 $[i, h] = [\{v_3, v_4\}, \{v_4, v_2\}]$ is in $[J_p^{\perp}, F_p]$.

We have
$$[\gamma(j), \gamma(f)] = \gamma(e) = E_p + E_p^{\perp}$$
 where $E_p = [J_p, F_p^{\perp}] + [J_p^{\perp}, F_p]$.

Let
$$p = v_2$$
. Then $E_p = j + h + e$.

Make orientation for $j = \{v_2, v_3\}$.

$$j = [f, e] + [h, i] + [i, h] \text{ in } \gamma(e) = [\gamma(j), \gamma(f)]$$

where $[f, e] = [\{v_3, v_5\}, \{v_5, v_2\}]$ is in $[J_p^{\perp}, F_p]$
 $[h, i] = [\{v_2, v_4\}, \{v_4, v_3\}]$ is in $[J_p, F_p^{\perp}]$
 $[i, h] = [\{v_3, v_4\}, \{v_4, v_2\}]$ is in $[J_p^{\perp}, F_p]$.

Hence $j = [h, i] = [\{v_2, v_4\}, \{v_4, v_3\}]$ is in $[J_p, F_p^{\perp}]$. $j = \{v_2, v_3\}$ is oriented v_2 in $\gamma(j)$ -side, that is $\alpha(v_2)$ -side.

The Oriented Form

 $\gamma(e)$ with respect to $\mathfrak{C}_{[0]}$

Oriented form of $\gamma(e)$

V3

Futher problems of $\mathcal{O}(n)$ as automorphisms.

1. Extending GF(2) to characteristic 2 in general.

Suppose ax = [by, cz].

a = bc, b = ca and c = ab iff $a = b = c = 1 \in \mathbb{F}_2(\theta)$.

The triangle multiplication property no longer works in characteristic 2.

Futher problems of $\mathcal{O}(n)$ as automorphisms.

1. Extending GF(2) to characteristic 2 in general.

Suppose ax = [by, cz].

a = bc, b = ca and c = ab iff $a = b = c = 1 \in \mathbb{F}_2(\theta)$.

The triangle multiplication property no longer works in characteristic 2.

2. Inverse Galois Problem: $\mathcal{O}(n) = \text{Gal}(\mathbb{Q}(\ldots)/\mathbb{Q}(\ldots))$.

Our approach is from: $\mathcal{O}(n) = \operatorname{Aut}(L_0)$.