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Dramatis personae of varieties

Fix integers 0 ≤ r ≤ n throughout.

We have group actions

GLr y Ar×n x T = (C×)n ⊂ GLn
π : / GLr ↓

Gr(r , n) x T

The moment polytope of Gr(r , n) is the hypersimplex

conv
{∑

j∈B

ej : B ⊂ [n], |B | = r
}

.

E.g. (r , n) = (2, 4):
{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

This is also the moment polytope of a generic T -orbit.
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Matroids

Matroids extract the combinatorics of vector configurations in (Kr )n.
One approach: which r -tuples of the vectors are bases?

The moment polytope (⇒ iso type) of xT ⊂ Gr(r , n) is determined by
its vertices, namely which T -fixed points it contains (the bases).

Definition
A matroid is a polytope all of
whose edges are edges of the
hypersimplex.

Example
{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

Not all matroids are realizable by vector configurations ⇐⇒ T -orbits
on Gr(r , n).
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Matroid invariants from K -theory

Several known matroid invariants are additive on polytope
subdivisions, with inclusion-exclusion ([Tutte], [Billera-Jia-Reiner],
[Derksen], [Speyer], . . . )

!= +

The K -classes of orbits degenerate the same way.

Theorem (Speyer)

I The K-class K(xT ) depends only on the matroid of x.
I A K-class can be defined for nonrealizable matroids.
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Orbits in Ar×n

Question

Does K(GL vT ) depend only on the matroid of v? (. . . yes)

Application.
Suppose we wish to decompose the cyclic GLr -module generated by a
tensor v1 ⊗ · · · ⊗ vn ∈ (Cr )⊗n into irreducibles.
(Or the Schur-Weyl dual problem with Sn.)

This module is dual to the T -degree (1, . . . , 1) piece of the coordinate
ring of GL vT .

K 0
GL×T (Ar×n) = K 0

GL×T (pt) = Z[t±1
1 , . . . , t±1

n , u±1
1 , . . . , u±1

r ]Sr

while, if L is the locus of lower-rank matrices,

K 0
T (Gr(r , n)) = K 0

GL×T (Ar×n \ L) � K 0
GL×T (Ar×n).

Alex Fink Matroids and stabilization of K-polynomials 5 / 12



Orbits in Ar×n

Question

Does K(GL vT ) depend only on the matroid of v? (. . . yes)

Application.
Suppose we wish to decompose the cyclic GLr -module generated by a
tensor v1 ⊗ · · · ⊗ vn ∈ (Cr )⊗n into irreducibles.
(Or the Schur-Weyl dual problem with Sn.)

This module is dual to the T -degree (1, . . . , 1) piece of the coordinate
ring of GL vT .

K 0
GL×T (Ar×n) = K 0

GL×T (pt) = Z[t±1
1 , . . . , t±1

n , u±1
1 , . . . , u±1

r ]Sr

while, if L is the locus of lower-rank matrices,

K 0
T (Gr(r , n)) = K 0

GL×T (Ar×n \ L) � K 0
GL×T (Ar×n).

Alex Fink Matroids and stabilization of K-polynomials 5 / 12



Orbits in Ar×n

Question

Does K(GL vT ) depend only on the matroid of v? (. . . yes)

Application.
Suppose we wish to decompose the cyclic GLr -module generated by a
tensor v1 ⊗ · · · ⊗ vn ∈ (Cr )⊗n into irreducibles.
(Or the Schur-Weyl dual problem with Sn.)

This module is dual to the T -degree (1, . . . , 1) piece of the coordinate
ring of GL vT .

K 0
GL×T (Ar×n) = K 0

GL×T (pt) = Z[t±1
1 , . . . , t±1

n , u±1
1 , . . . , u±1

r ]Sr

while, if L is the locus of lower-rank matrices,

K 0
T (Gr(r , n)) = K 0

GL×T (Ar×n \ L) � K 0
GL×T (Ar×n).

Alex Fink Matroids and stabilization of K-polynomials 5 / 12



Avoiding ideals

The (equivariant K -theoretic) avoiding ideal A(Y ) of an invariant
subvariety Y ⊆ X is the kernel of K 0

G (X ) → K 0
G (X \ Y ).

A(Y ) is generated as a K 0
G (pt)-module by sheaves supported on Y .

Lemma 1
Let T y X be a torus, and ν : Char(T ) → R. The minimum “width”

max{ν(χ) : χ ∈ supp c} − min{ν(χ) : χ ∈ supp c}

for nonzero c ∈ A(Y ) is attained by c = K(Y ).

(Restrict to a generic 1-dim’l subtorus near a multiple of ν.
Then A(Y ) becomes a principal ideal.)
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K(GL vT ) is a matroid invariant

[Speyer] says that GL vT ∈ K 0
GL×T (Ar×n) is determined by the

matroid of v up to an element of A(L).

To pin it down:

K(L) is a polynomial of degree n − r + 1 in ur , so

Every nonzero element of A(L) which is polynomial in the u variables
has degree at least n − r + 1 in ur .

Proposition 2

If Y is an invariant subvariety of Ar×n not contained in L, then K(Y )

is polynomial of degree at most n − r in ur .

Main theorem

The K-class K(GL vT ) is determined by the matroid of v .
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An orbit-raising operator

After [Fehér-Rimányi]:

Embed A(r−1)×n as a coordinate subspace of Ar×n.

For an invariant Y ⊂ A(r−1)×n, consider GLr Y ⊂ Ar×n.

How does the K -class change?

Lemma (Fehér-Rimányi)

The coefficients of K(GLr Y ), as a poly in the new variable ur ,
are in A(Y ).
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Raising (positive) sheaves

Suppose M is a C[A(r−1)×n]-module with a presentation

0 → N → C[A(r−1)×n]⊗ V → M → 0

for V a f. d. GLr−1×T rep’n. Let M ′ be given by

0 → GLr N + (Minorsr ⊗ V ′) → C[Ar×n]⊗ V ′ → M ′ → 0.

where V ′ is the rep’n with the “same” character as V .

The support of M ′ is GLr supp(M).

Proposition

The finely graded Hilbert series Hilb(M ′) and Hilb(M) are “the same”.

“Same” here is with respect to the Schur basis:
sλ(u1, . . . , ur−1) becomes sλ(u1, . . . , ur ).
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Raising on K -polynomials

Theorem
For M and M ′ as before, we have K(M ′) = ρK(M), where

ρ sλ(u1, . . . , ur−1) =

n∑
k=0

ek(−t) s(λ+1,k)(u1, . . . , ur ),

extended Z[t±]-linearly.

Interpret sλ,k by the determinantal formula.

Proof of Proposition 2.

Suppose Y ⊂ Ar×n not contained in L had too wide a K -class.

Extract the coeff c of the top power of ur in K(Y ).
Then ρ c has the same leading coefficient but is in A(Y ).
Thus, K(Y ) − ρ c contradicts Lemma 1.
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Cohomology

The raising operator translates to cohomology well, though now we
pass from r × n to (r + c)× n:

sλ(u) 7→ (−1)cr
∑

k1,...,kc

ek1(t) · · · ekc (t) sλ,n+1−k1,...,n+c−kc (u).

It’s a corollary of the K -theory that

The cohomology class C(GL vT ) is determined by the matroid of v .

but not that

Theorem

C(GL vT ) is determined by C(π(v)T ).

We use this to give a formula for C(GL vT ) when v is generic:

C(GL vT ) = ω(s(r−1)n−r−1(u, u, t))

where ω transposes Schurs in u.
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Other parts of the work

Interpretation of some coefficients. For A ⊆ [n], the coefficient of

s(hook with a boxes and length k)(u) · tA

in K(GL vT ) is (−1)k if a = |A| and A is a rank k − 1
dependent set, else 0.

Matroid operations. We understand direct sum and parallel extension.
(=⇒ explicit formula for rank 2.)

Ideal generators. Up to radical; conjecturally exact; the conjecture is
true when r = 2 or r = n − 2.

Thank you!
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