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Dramatis personae of varieties

Fix integers 0 < r < n throughout.
We have group actions

GL, A A" AT = (C*)" c GL,
7T /GL,J,
Gr(r,n) A T
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Dramatis personae of varieties

Fix integers 0 < r < n throughout.
We have group actions

GL, A A" AT = (C*)" c GL,
7T /GL,J,
Gr(r,n) A T

The moment polytope of Gr(r, n) is the hypersimplex

E.g. (r,n) =(2,4):
{1,2)

conv{Zej : BCIn|,|Bl= r}. s .9

jEB

(3.4}
This is also the moment polytope of a generic T-orbit.

Alex Fink Matroids and stabilization of K-polynomials 2 / 12



Matroids

Matroids extract the combinatorics of vector configurations in (K")".
One approach: which r-tuples of the vectors are bases?
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Matroids

Matroids extract the combinatorics of vector configurations in (K")".
One approach: which r-tuples of the vectors are bases?

The moment polytope (= iso type) of xT C Gr(r, n) is determined by
its vertices, namely which T-fixed points it contains (the bases).
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Matroids

Matroids extract the combinatorics of vector configurations in (K")".
One approach: which r-tuples of the vectors are bases?

The moment polytope (= iso type) of xT C Gr(r, n) is determined by
its vertices, namely which T-fixed points it contains (the bases).

Example
Definition
A matroid is a polytope all of

whose edges are edges of the
hypersimplex.

(3.4

Not all matroids are realizable by vector configurations & T-orbits
on Gr(r,n).
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Matroid invariants from K-theory

Several known matroid invariants are additive on polytope
subdivisions, with inclusion-exclusion ([Tutte], [Billera-Jia-Reiner],
[Derksen], [Speyer], ...)
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Matroid invariants from K-theory

Several known matroid invariants are additive on polytope
subdivisions, with inclusion-exclusion ([Tutte], [Billera-Jia-Reiner],
[Derksen], [Speyer], ...)

The K-classes of orbits degenerate the same way.

Theorem (Speyer)
» The K-class K(xT) depends only on the matroid of x.

» A K-class can be defined for nonrealizable matroids.
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Does K(GL vT) depend only on the matroid of v? (...yes)

Suppose we wish to decompose the cyclic GL,-module generated by a
tensor vi @ - - @ v, € (C")®" into irreducibles.
(Or the Schur-Weyl dual problem with &,,.)

This module is dual to the T-degree (1,...,1) piece of the coordinate
ring of GL vT.

0 0 il akil il +176,
K(;LXT(AI‘XH) :K(;LXT(pr) :L[tl ,...,tn ‘Ul ,...,Ur }h’
while, if L is the locus of lower-rank matrices,

K2 (Gr(r,n)) = K&p  7(A™"\ L) « K (A7),



Orbits in A™"

Question
Does KC(GL vT) depend only on the matroid of v? (.. .yes)J

Application.

Suppose we wish to decompose the cyclic GL,-module generated by a
tensor vi ® - - ® v, € (C")®" into irreducibles.

(Or the Schur-Weyl dual problem with &,.)

This module is dual to the T-degree (1,...,1) piece of the coordinate
ring of GLvT.
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Orbits in A™"

Question

Does KC(GL vT) depend only on the matroid of v? (...yes)

Application.

Suppose we wish to decompose the cyclic GL,-module generated by a
tensor vi ® - - ® v, € (C")®" into irreducibles.

(Or the Schur-Weyl dual problem with &,,.)

This module is dual to the T-degree (1,...,1) piece of the coordinate
ring of GLvT.
KngT(A’X”) = KngT(pt) = Z[tfcl, e tfl, ulil, e, u,il]e’

while, if L is the locus of lower-rank matrices,

K2(Cr(r,n)) = Ko « (AN L) « K o (A7),
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Avoiding ideals

The (equivariant K-theoretic) avoiding ideal A(Y') of an invariant
subvariety Y C X is the kernel of K2(X) — K2(X \ Y).

A(Y) is generated as a Kg(pt)—module by sheaves supported on Y. J
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Avoiding ideals

The (equivariant K-theoretic) avoiding ideal A(Y') of an invariant
subvariety Y C X is the kernel of K2(X) — K2(X \ Y).

A(Y) is generated as a Kg(pt)—module by sheaves supported on Y. J

Lemma 1
Let T ~ X be a torus, and v : Char(T) — R. The minimum “width”

max{v(x) : X € supp ¢} — min{v(x) : X € supp c}
for nonzero ¢ € A(Y) is attained by ¢ = KC(Y).

(Restrict to a generic 1-dim’l subtorus near a multiple of -v.
Then A(Y') becomes a principal ideal.)
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IC(GL vT) is a matroid invariant

[Speyer] says that GL vT € KgL 7 (A™") is determined by the
matroid of v up to an element of A(L).
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IC(GL vT) is a matroid invariant

[Speyer] says that GLvT € KQ; . +(A™") is determined by the
matroid of v up to an element of A(L).

To pin it down:
KC(L) is a polynomial of degree n—r+1in u,, so

Every nonzero element of A(L) which is polynomial in the u variables
has degree at least n — r + 1 in u,.

Proposition 2

If Y is an invariant subvariety of A™" not contained in L, then K(Y')
is polynomial of degree at most n— r in u,.

Main theorem
The K-class IC(GL vT) is determined by the matroid of v.
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An orbit-raising operator

After [Fehér-Rimanyil:
Embed A(~1)%" as a coordinate subspace of A™*".
For an invariant Y C AUr=1%7 consider GL, Y C Ar*".

How does the K-class change?
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An orbit-raising operator

After [Fehér-Rimanyil:
Embed A(~1)%" as a coordinate subspace of A™*".
For an invariant Y C AUr=1%7 consider GL, Y C Ar*".

How does the K-class change?

Lemma (Fehér-Rimanyi)

The coefficients of IC(GL, Y), as a poly in the new variable u,,
are in A(Y).
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Raising (positive) sheaves

Suppose M is a C[A"~1)*"_module with a presentation
05N CAY"MgvV M0
for Vaf. d. GL, 1 xT rep'n. Let M’ be given by
0 — GL, N + (Minors, ® V') = CIA™" @ V' = M’ = 0.

where V' is the rep'n with the “same” character as V.

The support of M’ is GL, supp(M). J

Proposition

The finely graded Hilbert series Hilb(M') and Hilb(M) are “the same”.

“Same” here is with respect to the Schur basis:
sy(uy,...,u—1) becomes sy(u1,...,u,).
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Raising on K-polynomials

Theorem
For M and M’ as before, we have K(M') = p K(M), where

n
psalun, ..o 1) =) el—t) s, -, ur),
k=0

extended Z[t*]-linearly.

Interpret sy j by the determinantal formula.

Proof of Proposition 2.
Suppose Y C A™" not contained in L had too wide a K-class.
Extract the coeff ¢ of the top power of u, in K(Y).

Then p ¢ has the same leading coefficient but is in A(Y).
Thus, K(Y) — p ¢ contradicts Lemma 1. O
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Cohomology

The raising operator translates to cohomology well, though now we
pass from r x nto (r 4+ ¢) x n:

sa(u) — (1) Z €y (1) -+ e (1) Shn1—ky . inte—ke (U).
Kiyoke
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Cohomology

The raising operator translates to cohomology well, though now we
pass from r x nto (r 4+ ¢) x n:

sa(u) — (1) Z €y (1) -+ e (1) Shn1—ky . inte—ke (U).
Kiyoke

It's a corollary of the K-theory that

The cohomology class C(GL vT) is determined by the matroid of v. J

but not that
Theorem J

C(GL vT) is determined by C(mt(v)T).
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Cohomology

The raising operator translates to cohomology well, though now we
pass from r x nto (r 4+ ¢) x n:

sa(u) — (1) Z €y (1) -+ e (1) Shn1—ky . inte—ke (U).
Kiyoke

It's a corollary of the K-theory that

The cohomology class C(GL vT) is determined by the matroid of v. J

but not that

Theorem

C(GL vT) is determined by C(mt(v)T).

We use this to give a formula for C(GL vT) when v is generic:
C(GLVT) = w(s(,—1)n-r-1(u,u,t))

where w transposes Schurs in u.
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Other parts of the work

Interpretation of some coefficients. For A C [n], the coefficient of

A
S(hook with a boxes and length k)(u) -t

in K(GLvT) is (1) if a=|A| and Ais a rank k — 1
dependent set, else 0.

Matroid operations. We understand direct sum and parallel extension.
(= explicit formula for rank 2.)

Ideal generators. Up to radical; conjecturally exact; the conjecture is
true when r =2 or r = n—2.
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Other parts of the work

Interpretation of some coefficients. For A C [n], the coefficient of

A
S(hook with a boxes and length k)(u) -t

in K(GLvT) is (1) if a=|A| and Ais a rank k — 1
dependent set, else 0.

Matroid operations. We understand direct sum and parallel extension.
(= explicit formula for rank 2.)

Ideal generators. Up to radical; conjecturally exact; the conjecture is
true when r =2 or r = n—2.

Thank you!
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