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The Riemann Theta Function

Let Hg denote the space of “Riemann matrices”: set of all
symmetrix Ω ∈ Cg×g such that Im(Ω) is positive definite.

Riemann Theta Function

θ : Cg ×Hg → C

θ(z,Ω) =
�

n∈Zg

e
2πi

�
1
2n·Ωn+z·n

�

Converges absolutely and uniformly on compact sets in
Cg ×Hg.

Quasiperiodic: integer period. Doubly exponential growth in
the columns of Ω. For m1,m2 ∈ Zg,

θ(z +m1 +Ωm2,Ω) = e
−2πi

�
1
2m2·Ωm2+z·m2

�

θ(z,Ω)
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The Riemann Theta Function

Slight generalization: Riemann theta functions with characteristic
[α, β]: let α, β ∈ [0, 1)g. Define

θ[α, β](z,Ω) =
�

n∈Zg

e
2πi

�
1
2 (n+α)·Ω(n+α)+(z+β)·(n+α)

�

Addition formulas. One application: rewrite θ(z,Ω) in terms of
θ[α, β](0,Ω) for various α, β ∈ {0, 1/2}g.
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A Special Way to Construct Riemann Matrices

Let f ∈ C[x, y], possibly with singularities, with genus g.

1 Desingularize, compactify and determine corresponding
Riemann surface Γ.

2 Determine basis for homology {a1, . . . , ag, b1, . . . , bg} and
basis for cohomology {ω1, . . . , ωg}. (Basis of holomorphic
differentials.)

3 Form the matrices A,B and Ω:

Ω = A−1B where (A)ij =

�

aj

ωi and (B)ij =

�

bj

ωi.

4 Claim: Ω is a Riemann matrix.
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The Schottky Problem

Classifying which Riemann matrices come from algebraic curves:

Dimension of g × g Riemann matrices:

g(g + 1)

2

Dimension of g × g Riemann matrices derived from algebraic
curves:

3g − 3

This problem was solved by Shiota: Ω is a Riemann matrix derived
from an algebraic curve if and only if

u(x, y, t) = 2∂2
x log θ(k̄x+ l̄y + ω̄t,Ω)

is a solution to the Kadomtsev–Petviashvili Equation.
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What is Sage?

Sage is a free open-source mathematics software system licensed
under the GPL. It combines the power of many existing

open-source packages into a common Python-based interface.
Mission: Creating a viable free open-source alternative to Magma,

Maple, Mathematica, and Matlab.

Website: http://www.sagemath.org
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Current Riemann Theta Functionality in Sage

Goal: to provide functionality in Sage for working with Riemann
theta functions.

(1) Evaluating Riemann theta functions:
Given a Riemann matrix, Ω ∈ Cg×g, and z ∈ Cg; compute
θ(z,Ω) and its derivatives.

Arbitrary (user-specified) precision.

Sage implementation of the technique of Deconinck, Heil,

Bobenko, van Hoeij, and Schmies [1].

8-20 times faster than Maple’s implementation.
Code submission needs peer-review: Sage Trac Ticket #6371.
(http://trac.sagemath.org/sage trac/ticket/6371)
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Current Riemann Theta Functionality in Sage

(2) Given an algebraic curve in C[x, y], compute a corresponding
Riemann matrix. Required components:

Puiseux series,
integral basis of C[x] in C(x, y),
singularities of a plane algebraic curve: branching numbers,
multiplicities, etc.,
genus,
monodromy,
homology basis,
cohomology basis,
period matrix.
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Implementation

Advertisment: If you have any students, this project is a good
way for them to learn these concepts.

Bill Thurston:

“The standard of correctness and completeness necessary to get a

computer program to work at all is a couple of orders of magnitude

higher than the mathematical community’s standard of valid

proofs.”
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The Kadomtsev–Petviashvili Equation

Find a solution u(x, y, t) to the non-linear PDE

3
4uyy =

∂

∂x

�
ut −

1
4(6uux + uxxx)

�
.

Integrable: can be written as the compatibility condition of a
Lax-pair.

Describes 2D shallow water wave-propagation.

2D counterpart to the Korteweg – de Vries equation

4ut = 6uux + uxxx.
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Periodic Solutions to KP

KP admits a large family of solutions of the form

u(x, y, t) = 2∂2
x log θ(z,Ω)

(up to a constant shift) where θ is the Riemann theta function, the
phase variable z = (z1, . . . , zg) is defined as

z = k̄x+ l̄y + ω̄t+ φ̄, k̄, l̄, ω̄, φ̄ ∈ Cg

and Ω ∈ Cg×g is a Riemann matrix derived from a particular
algebraic curve.

so-called, “genus g solution to KP”

physically, k̄ and l̄ are vectors of wave numbers, ω̄ is a vector
of frequencies, and φ̄ is a phase shift
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Example genus 1,2, and 3 solutions to KP. (Courtesy Dubrovin,

Flickinger, and Segur.)
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Constructing Genus g Solutions

Theorem

For each Riemann surface Γ of genus g and each point Q ∈ Γ we
can construct in a neighborhood of Q a family of solutions to the
KP equation. These are parameterized by the non-special divisors
of degree g on Γ.

(Very brief) Sketch of construction:

Pick your favorite Riemann surface and a point Q on that surface.

Choose a non-special divisor of degree g and construct a
corresponding Baker-Akhiezer function ψ from the polynomial,
q(k) = kx+ k2y + k3t, where k−1 is a local parameter at Q.

Integrate Abelian differentials of the second kind with double, triple,
and quadruple poles at infinity to obtain k̄, l̄, and ω̄, respectively.
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Genus g = 3 Solutions

When considering only genus g ≤ 3 solutions the process for generating
solutions is greatly simplified, as the Schottky problem is not an issue.
Outline (in the interest of time):

Substitute 2∂2
x log θ(z,Ω) into the KP equation to obtain DE in

terms of θ.

Use Riemann theta addition formulas to rewrite in terms of theta
with characteristics (and their derivatives) evaluated at z = 0.

8 half-period characteristics → 8 equations.

The coefficients of this system are polynomial functions of the
components of k̄, l̄, and ω̄. Construct a linear system in terms of
these coefficients and solve.

(Time permitting, I will share the details at the end of the talk.)
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Sage Implementation

This algorithm is implemented in Sage. It will be part of an “extended
examples” documentation for RiemannTheta.

Key difference from DFS algorithm: computation of Riemann theta

functions.
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Problem

Writing homogenous polynomials as determinants of “Linear
Matrix Representations”: “determinantal represenations” of
polynomials.

Theorem

Every homogenous polynomial in three variables can be written as

f(x, y, z) = det(Ax+By + Cz)

where A,B and C are symmetric matrices.

(Discussions with Daniel Plaumann, Bernd Sturmfels, and Cynthia

Vinzant. Additional discussions with Rekha Thomas.)
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Applications: Classifying Spectrahedra

Spectrahedron: the intersection of an affine subspace K with the
cone of positive semidefinite matrices Sn

+. Very loosely, an
intersection of finitely many polynomial inequalities.

Applications to semidefinite programming.

Claim: all two-dimensional spectrahedra are precisely the subsets
of R2 bounded by rigidly convex algebraic curves, i.e.
Helton-Vinnikov curves.
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Helton-Vinnikov Curves

The algebraic curve has a maximal number of nested ovals. Namely,
there are �d/2� nested ovals where d = deg f . The innermost oval
bounds a spectrahedron.

Plot in R2 of the curve f(x, y) = x4 + x2y2 − 3x2 + y4 − 3y2 + 2
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LMI Construction: The Helton–Vinnikov Theorem

Theorem: (Helton–Vinnikov) Let f ∈ R[x, y, z]d with
f(1, 0, 0) = 1 and Γ = VC(f) ⊂ P2. Assume

1 Γ is a non-rational (genus > 0) Helton–Vinnikov curve with
the point (1 : 0 : 0) inside its innermost oval.

2 The d real intersection points of Γ with the line {z = 0} are
distinct non-singular points Q1, . . . , Qd with coordinates
Qi = (−βj : 1 : 0) where βj �= 0.

Then, f(x, y, z) = det(Iddx+By + Cz) where
B = diag(β1, . . . , βd) and C is real symmetric with diagonal entries

cii = βi
∂zf(−βi, 1, 0)

∂yf(−βi, 1, 0)

and off-diagonal entries of C are...
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LMI Contruction: The Helton-Vinnikov Theorem

cjk =
βk − βj

θ[δ](0)

θ[δ] (A(Qk)−A(Qj))

θ[�] (A(Qk)−A(Qj))

�
ω · ∇θ[�](0)

−d(z/y)
(Qj)

�
ω · ∇θ[�](0)

−d(z/y)
(Qk)

where � is an arbitrary odd theta characteristic, δ is an even theta
characteristic such that θ[δ](0) �= 0, and A : Γ → Jac(Γ) is the
Abel-Jacobi map.
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Implementation: Maple

Plaumann wrote a Maple script to compute determinantal
representations:

www.math.uni-konstanz.de/∼plaumann/theta.html

Compute times for the matrix C: (1.6 Ghz dual-core processor,
4GB RAM)

d = 4, g = 3: approx. 5 minutes (longer to plot than compute!)

d = 5, g = 6: approx. 4 hours

d = 6, g = 10: ???
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Implementation: Sage

Since the ability to compute Riemann matrices is needed, a Sage
implementation is not yet available. Also needed are:

calculation of the Abel-Jacobi map A : Γ → Jac(Γ),

calculation of Fay’s prime form E(Qi, Qj).

Fast calculation of these two functions is a primary goal.
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Thank you
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Algorithm

Input: a Riemann matrix Ω and k1, k2, l1;

Output: k3, l2, l3, ω̄ and the corresponding solution

u(x, y, t) = 2∂2
x log θ(k̄x+ l̄y + ω̄z,Ω)

(Step 1) Choose arbitrary k1, k2, and l1. (Possible due to the Lie
Symmetries of KP.)
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(Step 2) Construct the 7× 7 matrix




θ11[m1, 0] θ12[m1, 0] · · · θ33[m1, 0] θ[m1, 0]
θ11[m2, 0] · · · θ[m2, 0]

... · · ·
...

θ11[m7, 0] · · · θ[m7, 0]





where...
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[mi, 0],mi ∈ {0, 12}
3 are theta characteristics chosen such

that the matrix is invertible,

θij [m, 0] is defined by

θij [m, 0] :=
∂2θ[m, 0](0,Ω)

∂zi∂zj
,

and ∂4
kθ[m, 0] is defined by

∂4
kθ[m, 0] :=

�

1≤i,j,k,l≤3

kikjkkkl
∂4θ[m, 0](0,Ω)

∂zi∂zj∂zk∂zl
.
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(Step 3) Compute the inverse matrix





a11m1
· · · a11m7

a12m1
· · · a12m7

... · · ·
...

a33m1
· · · a33m7

am1 · · · am7




.

(Step 4) Construct the following degree 4 and 6 polynomials:

Qij(k) := −

�

m∈{m1,...,m7}

aijm∂4
kθ[m, 0]

Pij(k) :=
1
3

�
k2iQjj(k)− kikjQij(k) + k2jQii(k)

�
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(Step 5) Finally, find k3, l2, l3, ω1, ω2, ω3 by computing the solutions to
the following system of six equations

kilj − kjli =
�

Pij(k), for 1 ≤ i < j ≤ 3

ωi =
Qii(k)− 3l2i

ki

for some choice of sign on the square roots. Every solution to
this system gives rise to a solution to KP.
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