IMMERSE 2007

Algebra Exercises

4. Week 4

For the following exercise set, the "Newton polytope (unbounded) of I" is the UNBOUNDED convex hull of all the monomials in I. It is what Hübl denotes K(I).

Exercise 4.1. Show that if I and J are monomial ideals, then so are: I + J, $I \cap J$, IJ, and rad(I).

Exercise 4.2. Let $I = (X^3, Y^2)$. Let $\mathfrak{m} = (X, Y)$. Find the set of monomials that are in I and not in $\mathfrak{m}I$. (That is, the set of monomials in $I \setminus \mathfrak{m}I$.) Repeat for $I = (X^3, X^2Y, Y^2)$.

Exercise 4.3. Let $I \subset R = k[x_1, \ldots, x_d]$ be a monomial ideal. Let $\mathfrak{m} = (x_1, \ldots, x_d)$. In Exercise 3.6 you showed that there is one and only one irredundant generating set for I consisting of monomials. Show that this irredundant monomial generating set is given by the set of monomials that are in I but not in $\mathfrak{m}I$.

Exercise 4.4. Let I be an ideal (not necessarily monomial). Show that for $a, b \ge 1$, we have $I^a I^b = I^{a+b}$. The zeroth power is defined as $I^0 = (1)$, the unit ideal. Show that $I^0 I^b = I^b = I^b I^0$.

Exercise 4.5. Set $I = (X_0^3 X_1^5, X_0^4 X_1^4, X_0^5 X_1^2) \subseteq k[X_0, X_1]$. Graph the Newton polytope (unbounded) of I in \mathbb{R}^2 .

Exercise 4.6. Set $I = (X_0^3 X_1^5, X_0^4 X_1^4, X_0^5 X_1^2) \subseteq k[X_0, X_1, X_2]$. Graph the Newton polytope (unbounded) of I in \mathbb{R}^3 .

Paper Exercise 4.7. For the monomial ideal $I = (X_0^3 X_1^5, X_0^4 X_1^4, X_0^5 X_1^2) \subseteq k[X_0, X_1, X_2]$, determine the following

(i) $C, K, \sigma_i, s_i, \Sigma_i$, and ∂K , as in Lemma 1.

(ii) $S, A_i, \partial \Sigma_i$, and $A_i \cap \partial \Sigma_i$ as in Lemma 2.

(iii) F_i as in the definition on page 3775.

Exercise 4.8. For this exercise, let V be a vector space over the real numbers \mathbb{R} .

Recall the following definition: an **affine subspace** $A \subset V$ is a translation of a vector subspace, A = L + b for some linear subspace (aka vector subspace) $L \subset V$ and some vector $b \in V$.

Show the following:

a. The Minkowski sum of two affine subspaces is again an affine subspace. So is their convex hull.

- b. An arbitrary intersection of affine subspaces is again an affine subspace; or empty.
- c. Let $S \subset V$ be any nonempty subset. The **affine hull of** S is defined as:

aff
$$(S) = \{ v \in V : v = t_1 s_1 + \dots + t_d s_d, d \ge 1, s_i \in S, t_i \in \mathbb{R}, \}$$
 $[t_i = 1]$

Show $\operatorname{aff}(S)$ is an affine subspace.

- d. Let $S \subset V$ be any nonempty subset. Show that aff(S) as defined above is equal to the intersection of all the affine subspaces of V containing S.
- e. Let $S \subset V$ be any nonempty subset and let $s \in S$. Let S s be the translation of S by -s. Let L be the linear span of S s. Show that aff(S) = L + s.

Exercise 4.9. Recall we defined the dimension of an affine subspace dim A to be dim L. Show the following.

a. If there is a chain of affine subspaces

$$A_0 \subsetneq A_1 \subsetneq \cdots \subsetneq A_r = A,$$

then $\dim A > r$.

- b. Furthermore, dim A = r where r is the largest integer such that there exists a chain of length r, as written above.
- c. If $S \subset \mathbb{R}^n$ is a finite set with p elements, then dim aff(S) < p.
- d. We say S is affinely independent if S is a finite set with p elements and dim aff (S) = p 1. Now, if $A \subset \mathbb{R}^n$ is an affine subspace, show that dim A is one less than the size of the largest affinely independent subset of A.

Definition 1. Let R be a commutative ring with 1. A monic polynomial with coefficients in R is a polynomial whose leading coefficient is 1, that is, a polynomial $f = x^n + r_1 x^{n-1} + \cdots + r_n$.

Exercise 4.10. This exercise is an introduction to the theory of "integral closure" that we will talk about in class soon. For this exercise, let $R = \mathbb{Z}$, the ring of integers with the usual operations.

- a. Let $f(x) = x^n + r_1 x^{n-1} + \dots + r_n$ be a monic polynomial with coefficients $r_i \in \mathbb{Z}$. Suppose $a/b \in \mathbb{Q}$ is a rational number such that f(a/b) = 0. Then show $a/b \in \mathbb{Z}$. [HINT: Say a/b is written in lowest terms, ie, a and b have no common factors. Say p is a prime factor of b. Clear denominators in the equation f(a/b) = 0, then show p is also a prime factor of a. Now, what is b?]
- b. On the other hand, there are lots of irrational real numbers that satisfy monic polynomials with integer coefficients. Show that $\sqrt{2}$ and $\sqrt{2} + \sqrt[5]{3}$ satisfy this condition. Show that $i = \sqrt{-1}$ satisfies this condition. Show that $\sqrt{2} + \sqrt{3}$ satisfies this condition. [That is, find monic polynomials that these numbers satisfy.]
- c. Show that $1/\sqrt{2}$ does NOT satisfy any monic polynomial with integer coefficients.

Exercise 4.11. Show the following.

- a. Show $(x^2y^2)^r \in (x^4, x^3y^3, y^4)^r$ for some r > 0.
- b. Say I is a monomial ideal generated by m_1, \ldots, m_t , with corresponding exponent vectors v_1, \ldots, v_t . Say n is a monomial with exponent vector w. Suppose $n^r \in I^r$ for some r > 0. Then show $w \in K(I)$. [HINT: Write $n^r = g \cdot m_1^{a_1} \dots m_t^{a_t}$ for some $g \in R$ and $\sum a_i = r$. Show g is a monomial; say its exponent vector is u. Then $rw = u + a_1v_1 + \cdots + a_tv_t$. Divide by r.]
- c. Let I, m_i, v_i, n , and w be as before. Suppose $w \in K(I)$. Then show $n^r \in I^r$ for some r > 0. [HINT: Use the fact that we can write $w = c_1v_1 + \cdots + c_tv_t$ with **rational** $c_i, \sum c_i \ge 1$. Then clear denominators.]
- d. For a monomial ideal I and a monomial n, we have $n^r \in I^r$ for some r > 0 if and only if $n \in K(I)$.

Definition 2. A polynomial $f \in k[x_1, \ldots, x_n]$ is called **homogeneous of degree** d if every term in f has degree d. For a polynomial f, we write $f = f_0 + f_1 + \cdots + f_n$, where f_d is the sum of all the terms of degree d in f; we say f_d is the degree d part of f. An ideal $I \subset k[x_1, \ldots, x_n]$ is called a homogeneous ideal if there is a generating set for I consisting of homogeneous polynomials.

Exercise 4.12. Let $R = k[x_1, \ldots, x_n]$. Show the following.

- a. If f is homogeneous of degree d then $d \cdot f = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}$. Also $f(tx_1, \dots, tx_n) = t^d f(x_1, \dots, x_n)$. b. If f is homogeneous of degree d and g is homogeneous of degree e, then fg is homogeneous of degree d + e.
- c. If I and J are homogeneous ideals, then so are I + J, $I \cap J$, and IJ. And so is rad(I).
- d. Show that an ideal I is homogeneous if and only if for every $f \in I$ and for every d, the degree d part $f_d \in I$. [Compare with Exercise 3.5.] Show f is homogeneous if and only if (f) is homogeneous.
- e. Let I be a homogeneous ideal. Show that either I = (1) or $I \subseteq (x_1, \ldots, x_n)$.