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Algebra Exercises

3. Week 3

Exercise 3.1. Let f and g be monomials in R = k[x1, . . . , xn].

a. Say f = xa1
1 · · ·xan

n and g = xb1
1 · · ·xbn

n . Show f | g if and only if for all 1 ≤ i ≤ n, we have ai ≤ bi.
b. Prove that if f ∈ (g)R, then deg(f) ≥ deg(g).
c. Is the converse true or false? Explain. [HINT: Treat the cases n = 1 and n > 1 separately.]
d. Prove that if f and g have the same degree and if f ∈ (g)R, then g = f .

Definition 1. Let R be a commutative ring with unity, S ⊂ R, and I = (S). An element s ∈ S is called a
redundant generator if the set S \ {s} generates the same ideal I. If S contains no redundant generators,
then S is called irredundant.

Exercise 3.2. In the ring Z, show that (6, 10) = (2), but {6, 10} is an irredundant generating set for the
ideal.

Exercise 3.3. Let z1, . . . , zm be monomials in R = k[x1, . . . , xd] and set J = (z1, . . . , zm). Show that the
following conditions are equivalent.

(i) z1, . . . , zm is an irredundant generating sequence for J .
(ii) For all i 6= j, we have zi - zj .

Exercise 3.4. Set R = k[x1, . . . , xn] and m = (x1, . . . , xn), and let f ∈ R. Show that f ∈ mn if and only if
each monomial occurring in f has degree ≥ n.

Exercise 3.5. Let R = k[x1, . . . , xd]. Show that the following conditions are equivalent.

(i) I is a monomial ideal.
(ii) For each f ∈ I each monomial occurring in f with nonzero coefficient is in I.

Exercise 3.6. Let I ⊂ R = k[x1, . . . , xn] be a monomial ideal. Show the following: There is a unique
irredundant monomial generating set for I. It is the unique containment-minimal monomial generating set.
A set of monomials in I generates I if and only if it contains this minimal set.

Exercise 3.7. Let I, J , and J ′ be ideals in a ring R. Prove or disprove: I(J + J ′) = IJ + IJ ′.

Exercise 3.8. Let I and J be ideals of R such that I + J = R. Prove that IJ = I ∩ J .

Exercise 3.9. Prove or disprove:

a. Every (finite or infinite) intersection of convex sets is convex.
b. A finite union of convex sets is convex.
c. The convex hull of a finite collection of convex sets is the smallest convex set containing the union of the

collection.
d. If Ki is a convex set for i = 1, 2, 3, . . . and K1 ⊂ K2 ⊂ . . . then the union

⋃
Ki is convex.

(Compare with exercises 1.5, 1.10, 1.12, and 2.19.) The above statements suggest an analogy between ideals
and convex sets. For each of the following operations on ideals, identify the analogous operation on convex
sets. How many more statements about ideals or convex sets can you come up with, based on this analogy?
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i. The intersection of ideals.
ii. The sum of ideals.
iii. The ideal generated by a set.

Exercise 3.10. Prove: If K ⊆ Rd is convex, x ∈ K and y ∈ int(K), then all points of the line segment
between x and y belong to int(K).

Definition 2. Let I ⊂ R = k[x1, . . . , xn] be a monomial ideal. The Newton polytope of I is the convex
hull in Rn of the set of exponent vectors of all the monomials in I. The Newton polyhedron of I is the
convex hull in Rn of the set of exponent vectors of the monomials in a minimal generating set for I.

In the paper we are reading, Hübl refers to the Newton polytope of I as K(I), or K, and to the Newton
polyhedron of I as C(I), or C.

Exercise 3.11. Let I, J be monomial ideals. Express the following in terms of the Newton polytopes of I
and of J :

a. The Newton polytope of I + J
b. ... of IJ
c. ... of I ∩ J

Exercise 3.12. For the following ideals, find the facets (codimension-1 faces) of the Newton polytopes.
Which facets are unbounded?

a. I = (x, y) ⊂ k[x, y, z]
b. I = (x2, y2, z2) ⊂ k[x, y, z]
c. I = (x2, y2, z2, xyz) ⊂ k[x, y, z]

Paper Exercise 3.13. For the the monomial ideal I = (X4
0 , X3

0X3
1 , X4

1 ) (as on page 3772 of the Hübl
paper), determine S, Aj , δ

∑
i, and Aj ∩ δ

∑
i as in Lemma 2 and Fi as in the definition on page 3775.

Paper Exercise 3.14. For the the monomial ideal I = (X3
0X5

1 , X4
0X4

1 , X5
0X2

1 ) ⊆ k[X0, X1], determine the
following:

a. C, K, σi, si,
∑

i, and ∂K, as in Lemma 1.
b. S, Aj , δ

∑
i, and Aj ∩ ∂

∑
i as in Lemma 2

c. Fi as in the definition on page 3775.

Definition 3. Let S be a set and ≺ a binary relation on S such that a 6≺ a for all a ∈ S. We define a
new relation, “weak ≺”, denoted �, by a � b if and only if either a ≺ b or a = b. Then ≺ is a (strict)
partial order and � is a (weak) partial order if and only if � is antisymmetric and transitive. (Recall �
is antisymmetric if a � b and b � a implies a = b, and � is antisymmetric if a � b and b � c implies a � c.)

Furthermore ≺ and � are total orders if in addition to the above, for every a, b ∈ S, either a � b or b � a.
Equivalently, either a ≺ b, a = b, or b ≺ a.

Exercise 3.15. a. Show that the lexicographical ordering < on the monomials in R = A[x, y] is a total
ordering. Also, for each monomial f ∈ R, show that f 6< f .

b. Define a lexicographical ordering on the monomials in A[x1, . . . , xd] and prove that it satisfies the prop-
erties from part a.

Exercise 3.16. Write the first 10 monic monomials in k[x, y] in lexicographic order and in degree-lexicographic
order.

Exercise 3.17. Write all the monic monomials in k[x, y, z] of total degree at most 2 in lexicographic order
and in degree-lexicographic order.


