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Algebra Exercises

2. Week 2

Unless otherwise noted, the letters R and A denote commutative rings with unity, the letters I and J denote
ideals, the letter k denotes a field, and letters like Xi denote variables.

Definition 2.1. Let σ : Rn → R be a linear function and let s be a real number. The closed half space in
Rn corresponding to σ and s is the set {v ∈ Rn : σ(v) ≥ s}. The open half space in Rn corresponding to σ
and s is the set {v ∈ Rn : σ(v) > s}.

Exercise 2.1. Let σ : Rn → R be a linear function and let s be a real number. Let Σ be the corresponding
closed half space and let Σ◦ be the corresponding open half space.

a. Show that Σ and Σ◦ are convex.
b. Show that Σ is the topological closure of Σ◦ and Σ◦ is the topological interior of Σ.

Paper Exercise 2.2. For the the monomial ideal I = (X4
0 , X3

0X3
1 , X4

1 ) (as on page 3772 of the Hübl paper),
determine C, K, σi, si, and Σi, as in Lemma 1.

Exercise 2.3. For each of the sets in Exercise 1.15 that is an ideal, find a finite generating set. Prove that the
set actually generates the ideal.

Exercise 2.4. Prove that an ideal I of R is maximal if and only if R/I is a field.

Exercise 2.5. Prove that R is a field if and only if the only ideals of R are (0R) and R.

Exercise 2.6. Show that if R is a commutative ring, then R[x] is never a field.

Exercise 2.7. a. Say R is a domain. Show that if a polynomial in R[x] is a unit, then it is a nonzero constant.
b. Say R = k is a field. Then the converse is true: if a polynomial in k[x] is a nonzero constant, it is a unit.
c. Show that (2x + 1)2 = 1 in (Z/4)[x]. Conclude that the hypothesis in part (a) that R be a domain cannot

be removed in general.

Definition 2.2. Let A be a domain. An element f ∈ A is called irreducible if f 6= 0, f is not a unit, and for
any factorization f = gh, either g or h is a unit.

Exercise 2.8. Let f ∈ k[x] be a non-constant polynomial in one variable. Prove that the following are
equivalent: (1) k[x]/〈f〉 is a field. (2) k[x]/〈f〉 is an integral domain. (3) f is irreducible.

Exercise 2.9. Let f = Y 2 −X3 ∈ k[X, Y ]. Show f is irreducible. Is k[X, Y ]/〈f〉 a field, an integral domain,
or neither?

Definition 2.3. Let R be a commutative ring with identity and let I be an ideal of R. The radical of I is the
following set: rad(I) = {x ∈ R | xn ∈ I for some n > 0}. Other common notations include

√
I and r(I).

Exercise 2.10. Let R = Z. Find the radicals of the ideals: (12), (14), (16), (18).

Exercise 2.11. Prove the following statements:

a. rad(I) is an ideal of R. [HINT: To show closure under addition, use the binomial theorem.]
b. I ⊆ rad(I).
c. rad(I) = rad(rad(I)).
d. rad(IJ) = rad(I ∩ J) = rad(I) ∩ rad(J).
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e. rad(I) = R if and only if I = R. [HINT: Use 1 ∈ R.]
f. rad(I + J) = rad(rad(I) + rad(J)).
g. I ⊆ J implies rad(I) ⊆ rad(J).
h. Suppose I = (f1, . . . , fm). Then rad(I) ⊆ rad(J) if and only if for each i = 1, 2, . . . ,m there exists a positive

integer ni such that fni
i ∈ J .

i. Suppose I = (f1, . . . , fs) and J = (g1, . . . , gt). Then rad(I) = rad(J) if and only if for each i = 1, 2, . . . , s
there exists a positive integer ni such that fni

i ∈ J , and for each j = 1, 2, . . . , t there exists a positive integer
mj such that g

mj

j ∈ I.
j. Suppose I ⊆ J and that J = (g1, . . . , gt). Then rad(I) = rad(J) if and only if for each j = 1, 2, . . . , t there

exists an integer mj such that g
mj

j ∈ I.

Exercise 2.12. Let I and J be ideals of R.

a. Prove that I ∩ J is an ideal.
b. Show by example that the set of products {xy : x ∈ I, y ∈ J} need not be an ideal.
c. But show that the set of finite sums of products of elements of I and J is an ideal. That is, show the set
{
∑n

k=1 xkyk : n ≥ 0, and for each k, xk ∈ I, yk ∈ J} is an ideal.
It is called the product ideal of I and J and denoted IJ .

d. Prove that IJ ⊆ I ∩ J .
e. Show by example that IJ and I ∩ J need not be equal.

Exercise 2.13. Say I is generated by the set S and J is generated by the set T . True or false:

a. I ∩ J is generated by S ∩ T .
b. IJ is generated by {st : s ∈ S, t ∈ T}.
c. I2 = II is generated by {s2 : s ∈ S}.

(For “true”, give a proof; for “false”, give a counterexample.)

Paper Exercise 2.14. Let I be the same ideal as in exercise 2.2. Find a generating set for I2. Repeat
exercise 2.2 for I2.

Let X1, . . . , Xd be variables. For any vector of non-negative integers α ∈ Rd we may write Xα to denote
Xα1

1 · · ·Xαd

d . Also, we may write k[X] to denote k[X1, . . . , Xd], provided it is clear from context whether X
denotes a single variable or the collection of variables X1, . . . , Xd.

Exercise 2.15. Let X1, . . . , Xd be variables. We use the notation above, so X denotes the collection of variables.
Let cαXα be a nonzero monomial, and let f(X), g(X) ∈ k[X] be polynomials none of whose terms is divisible
by cαXα. Prove that none of the terms of f(X)− g(X) is divisible by cαXα.

Exercise 2.16. Let R = k[x1, . . . , xd] and m = (x1, . . . , xd)R. Show the following.

a. If I is a monomial ideal such that I 6= R, then rad(I) = m if and only if for each i = 1, . . . , d there exists an
integer ni > 0 such that xni

i ∈ I.
b. The ideal m is radical, that is, rad(m) = m.

Exercise 2.17. Let I1, . . . , In be monomial ideals in R = k[x1, . . . , xd] and set m = (x1, . . . , xd)R.

a. Prove that the sum I1 + · · ·+ In is a monomial ideal.
b. If rad(I1) = · · · = rad(In) = m, show that rad(I1 + · · ·+ In) = m.
c. Prove or disprove: If rad(I1 + · · ·+ In) = m, then rad(I1) = · · · = rad(In) = m.

Exercise 2.18. Let I1, . . . , In be monomial ideals in R = k[x1, . . . , xd] and set m = (x1, . . . , xd)R.

a. Prove that the product I1 · · · In is a monomial ideal.
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b. If rad(I1) = · · · = rad(In) = m, show that rad(I1 · · · In) = m.
c. Prove or disprove: If rad(I1 · · · In) = m, then rad(I1) = · · · = rad(In) = m.

Definition 2.4. An ascending chain of ideals is an infinite sequence I1 ⊆ I2 ⊆ I3 ⊆ · · · . An ascending chain
is said to stabilize if there is some N such that for n ≥ N , In = IN . A ring R is called Noetherian if every
ascending chain of ideals in R stabilizes (the “ascending chain condition”).

Exercise 2.19. Let I1 ⊆ I2 ⊆ · · · be an ascending chain of ideals. Then I =
⋃

Ii = I1 ∪ I2 ∪ · · · is an ideal.

Exercise 2.20. Let A be a Noetherian ring. Show the following.

a. Every field k is Noetherian. [HINT: What ideals are there? What chains are possible?]
b. If I ⊂ A is an ideal, then A/I is Noetherian.
c. If I ⊂ A is an ideal, then there is a finite generating set for I. [HINT: Consider the set of all finitely

generated ideals contained in I. Use the Noetherian condition plus Zorn’s Lemma to show that among all
finitely generated ideals contained in I there is a maximal one. Now that must be I, otherwise adding one
more element to the generating set of the ideal would give a larger ideal, still finitely generated, violating
maximality.]

d. Conversely, if every ideal in R is finitely generated, then R is Noetherian. [HINT: Given a chain, the union
of the chain is an ideal and hence finitely generated. The members of the generating set must lie in some
ideals in the chain. Take a maximum.]

Hence: A ring R is Noetherian if and only if every ideal of R is finitely generated.
e. (Hilbert’s Basis Theorem) The ring A[X] is Noetherian. [HINT: Given an ideal I ⊂ A[X], show that the set

of leading coefficients of polynomials in I forms an ideal in A. By part (c), that ideal is finitely generated.
For each of those generators ai, pick a lowest-degree polynomial fi with leading coefficient ai. Show the fi

generate I by considering a lowest-degree member of I outside the ideal generated by the fi and obtaining
a contradiction.]

Hence: For a field k, every ideal in a polynomial ring k[X1, . . . , Xd] is finitely generated.
f. The previous part implies that k[X, Y ] is Noetherian. Let R ⊂ k[X, Y ] be the subset of polynomials whose

terms are of the form either cXaY b with b ≤ a
√

2 and c ∈ k. (Note that constant terms, a = b = 0, meet
this condition, so they are allowed.) For example, X ∈ R but Y /∈ R.

Now, show that R is a subring. Then show that R is not Noetherian.
Thus a subring of a Noetherian ring is not necessarily Noetherian.


