IMMERSE 2007

Algebra Exercises

2. Week 2

Unless otherwise noted, the letters R and A denote commutative rings with unity, the letters I and J denote ideals, the letter k denotes a field, and letters like X_i denote variables.

Definition 2.1. Let $\sigma : \mathbb{R}^n \to \mathbb{R}$ be a linear function and let *s* be a real number. The **closed half space** in \mathbb{R}^n corresponding to σ and *s* is the set $\{v \in \mathbb{R}^n : \sigma(v) \ge s\}$. The **open half space** in \mathbb{R}^n corresponding to σ and *s* is the set $\{v \in \mathbb{R}^n : \sigma(v) \ge s\}$.

Exercise 2.1. Let $\sigma : \mathbb{R}^n \to \mathbb{R}$ be a linear function and let *s* be a real number. Let Σ be the corresponding closed half space and let Σ° be the corresponding open half space.

a. Show that Σ and Σ° are convex.

b. Show that Σ is the topological closure of Σ° and Σ° is the topological interior of Σ .

Paper Exercise 2.2. For the the monomial ideal $I = (X_0^4, X_0^3 X_1^3, X_1^4)$ (as on page 3772 of the Hübl paper), determine C, K, σ_i, s_i , and Σ_i , as in Lemma 1.

Exercise 2.3. For each of the sets in Exercise 1.15 that is an ideal, find a finite generating set. Prove that the set actually generates the ideal.

Exercise 2.4. Prove that an ideal I of R is maximal if and only if R/I is a field.

Exercise 2.5. Prove that R is a field if and only if the only ideals of R are (0_R) and R.

Exercise 2.6. Show that if R is a commutative ring, then R[x] is never a field.

Exercise 2.7. a. Say R is a domain. Show that if a polynomial in R[x] is a unit, then it is a nonzero constant.

b. Say R = k is a field. Then the converse is true: if a polynomial in k[x] is a nonzero constant, it is a unit.

c. Show that $(2x+1)^2 = 1$ in $(\mathbb{Z}/4)[x]$. Conclude that the hypothesis in part (a) that R be a domain cannot be removed in general.

Definition 2.2. Let A be a domain. An element $f \in A$ is called **irreducible** if $f \neq 0$, f is not a unit, and for any factorization f = gh, either g or h is a unit.

Exercise 2.8. Let $f \in k[x]$ be a non-constant polynomial in one variable. Prove that the following are equivalent: (1) $k[x]/\langle f \rangle$ is a field. (2) $k[x]/\langle f \rangle$ is an integral domain. (3) f is irreducible.

Exercise 2.9. Let $f = Y^2 - X^3 \in k[X, Y]$. Show f is irreducible. Is $k[X, Y]/\langle f \rangle$ a field, an integral domain, or neither?

Definition 2.3. Let R be a commutative ring with identity and let I be an ideal of R. The **radical** of I is the following set: $rad(I) = \{x \in R \mid x^n \in I \text{ for some } n > 0\}$. Other common notations include \sqrt{I} and r(I).

Exercise 2.10. Let $R = \mathbb{Z}$. Find the radicals of the ideals: (12), (14), (16), (18).

Exercise 2.11. Prove the following statements:

a. rad(I) is an ideal of R. [HINT: To show closure under addition, use the binomial theorem.]

b. $I \subseteq \operatorname{rad}(I)$.

- c. $\operatorname{rad}(I) = \operatorname{rad}(\operatorname{rad}(I))$.
- d. $\operatorname{rad}(IJ) = \operatorname{rad}(I \cap J) = \operatorname{rad}(I) \cap \operatorname{rad}(J)$.

- e. rad(I) = R if and only if I = R. [HINT: Use $1 \in R$.]
- f. $\operatorname{rad}(I+J) = \operatorname{rad}(\operatorname{rad}(I) + \operatorname{rad}(J)).$
- g. $I \subseteq J$ implies $rad(I) \subseteq rad(J)$.
- h. Suppose $I = (f_1, \ldots, f_m)$. Then $rad(I) \subseteq rad(J)$ if and only if for each $i = 1, 2, \ldots, m$ there exists a positive integer n_i such that $f_i^{n_i} \in J$.
- i. Suppose $I = (f_1, \ldots, f_s)$ and $J = (g_1, \ldots, g_t)$. Then rad(I) = rad(J) if and only if for each $i = 1, 2, \ldots, s$ there exists a positive integer n_i such that $f_i^{n_i} \in J$, and for each $j = 1, 2, \ldots, t$ there exists a positive integer m_j such that $g_j^{m_j} \in I$.
- j. Suppose $I \subseteq J$ and that $J = (g_1, \ldots, g_t)$. Then rad(I) = rad(J) if and only if for each $j = 1, 2, \ldots, t$ there exists an integer m_j such that $g_j^{m_j} \in I$.

Exercise 2.12. Let I and J be ideals of R.

- a. Prove that $I \cap J$ is an ideal.
- b. Show by example that the set of products $\{xy : x \in I, y \in J\}$ need not be an ideal.
- c. But show that the set of finite sums of products of elements of I and J is an ideal. That is, show the set $\{\sum_{k=1}^{n} x_k y_k : n \ge 0, \text{ and for each } k, x_k \in I, y_k \in J\}$ is an ideal.
 - It is called the **product ideal of** I and J and denoted IJ.
- d. Prove that $IJ \subseteq I \cap J$.
- e. Show by example that IJ and $I \cap J$ need not be equal.

Exercise 2.13. Say I is generated by the set S and J is generated by the set T. True or false:

- a. $I \cap J$ is generated by $S \cap T$.
- b. IJ is generated by $\{st : s \in S, t \in T\}$.
- c. $I^2 = II$ is generated by $\{s^2 : s \in S\}$.

(For "true", give a proof; for "false", give a counterexample.)

Paper Exercise 2.14. Let I be the same ideal as in exercise 2.2. Find a generating set for I^2 . Repeat exercise 2.2 for I^2 .

Let X_1, \ldots, X_d be variables. For any vector of non-negative integers $\alpha \in \mathbb{R}^d$ we may write X^{α} to denote $X_1^{\alpha_1} \cdots X_d^{\alpha_d}$. Also, we may write k[X] to denote $k[X_1, \ldots, X_d]$, provided it is clear from context whether X denotes a single variable or the collection of variables X_1, \ldots, X_d .

Exercise 2.15. Let X_1, \ldots, X_d be variables. We use the notation above, so X denotes the collection of variables. Let $c_{\alpha}X^{\alpha}$ be a nonzero monomial, and let $f(X), g(X) \in k[X]$ be polynomials none of whose terms is divisible by $c_{\alpha}X^{\alpha}$. Prove that none of the terms of f(X) - g(X) is divisible by $c_{\alpha}X^{\alpha}$.

Exercise 2.16. Let $R = k[x_1, \ldots, x_d]$ and $\mathfrak{m} = (x_1, \ldots, x_d)R$. Show the following.

- a. If I is a monomial ideal such that $I \neq R$, then $rad(I) = \mathfrak{m}$ if and only if for each $i = 1, \ldots, d$ there exists an integer $n_i > 0$ such that $x_i^{n_i} \in I$.
- b. The ideal \mathfrak{m} is radical, that is, $rad(\mathfrak{m}) = \mathfrak{m}$.

Exercise 2.17. Let I_1, \ldots, I_n be monomial ideals in $R = k[x_1, \ldots, x_d]$ and set $\mathfrak{m} = (x_1, \ldots, x_d)R$.

- a. Prove that the sum $I_1 + \cdots + I_n$ is a monomial ideal.
- b. If $\operatorname{rad}(I_1) = \cdots = \operatorname{rad}(I_n) = \mathfrak{m}$, show that $\operatorname{rad}(I_1 + \cdots + I_n) = \mathfrak{m}$.
- c. Prove or disprove: If $\operatorname{rad}(I_1 + \cdots + I_n) = \mathfrak{m}$, then $\operatorname{rad}(I_1) = \cdots = \operatorname{rad}(I_n) = \mathfrak{m}$.

Exercise 2.18. Let I_1, \ldots, I_n be monomial ideals in $R = k[x_1, \ldots, x_d]$ and set $\mathfrak{m} = (x_1, \ldots, x_d)R$.

a. Prove that the product $I_1 \cdots I_n$ is a monomial ideal.

- b. If $rad(I_1) = \cdots = rad(I_n) = \mathfrak{m}$, show that $rad(I_1 \cdots I_n) = \mathfrak{m}$.
- c. Prove or disprove: If $rad(I_1 \cdots I_n) = \mathfrak{m}$, then $rad(I_1) = \cdots = rad(I_n) = \mathfrak{m}$.

Definition 2.4. An ascending chain of ideals is an infinite sequence $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$. An ascending chain is said to **stabilize** if there is some N such that for $n \geq N$, $I_n = I_N$. A ring R is called **Noetherian** if every ascending chain of ideals in R stabilizes (the "ascending chain condition").

Exercise 2.19. Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals. Then $I = \bigcup I_i = I_1 \cup I_2 \cup \cdots$ is an ideal.

Exercise 2.20. Let A be a Noetherian ring. Show the following.

- a. Every field k is Noetherian. [HINT: What ideals are there? What chains are possible?]
- b. If $I \subset A$ is an ideal, then A/I is Noetherian.
- c. If $I \subset A$ is an ideal, then there is a finite generating set for I. [HINT: Consider the set of all finitely generated ideals contained in I. Use the Noetherian condition plus Zorn's Lemma to show that among all finitely generated ideals contained in I there is a maximal one. Now that must be I, otherwise adding one more element to the generating set of the ideal would give a larger ideal, still finitely generated, violating maximality.]
- d. Conversely, if every ideal in R is finitely generated, then R is Noetherian. [HINT: Given a chain, the union of the chain is an ideal and hence finitely generated. The members of the generating set must lie in some ideals in the chain. Take a maximum.]

Hence: A ring R is Noetherian if and only if every ideal of R is finitely generated.

e. (Hilbert's Basis Theorem) The ring A[X] is Noetherian. [HINT: Given an ideal $I \subset A[X]$, show that the set of leading coefficients of polynomials in I forms an ideal in A. By part (c), that ideal is finitely generated. For each of those generators a_i , pick a lowest-degree polynomial f_i with leading coefficient a_i . Show the f_i generate I by considering a lowest-degree member of I outside the ideal generated by the f_i and obtaining a contradiction.]

Hence: For a field k, every ideal in a polynomial ring $k[X_1, \ldots, X_d]$ is finitely generated.

f. The previous part implies that k[X, Y] is Noetherian. Let $R \subset k[X, Y]$ be the subset of polynomials whose terms are of the form either cX^aY^b with $b \leq a\sqrt{2}$ and $c \in k$. (Note that constant terms, a = b = 0, meet this condition, so they are allowed.) For example, $X \in R$ but $Y \notin R$.

Now, show that R is a subring. Then show that R is not Noetherian.

Thus a subring of a Noetherian ring is not necessarily Noetherian.