IMMERSE 2007

Algebra Exercises

2. WEEK 2

Unless otherwise noted, the letters R and A denote commutative rings with unity, the letters I and J denote
ideals, the letter k denotes a field, and letters like X; denote variables.

Definition 2.1. Let ¢ : R™ — R be a linear function and let s be a real number. The closed half space in
R™ corresponding to ¢ and s is the set {v € R : 0(v) > s}. The open half space in R” corresponding to o
and s is the set {v € R" : o(v) > s}.

Exercise 2.1. Let 0 : R™ — R be a linear function and let s be a real number. Let ¥ be the corresponding
closed half space and let X° be the corresponding open half space.

a. Show that ¥ and X° are convex.
b. Show that ¥ is the topological closure of ¥° and 3° is the topological interior of X.

Paper Exercise 2.2. For the the monomial ideal I = (X§, X3 X3, X1) (as on page 3772 of the Hiibl paper),
determine C, K, o;, s;, and X;, as in Lemma 1.

Exercise 2.3. For each of the sets in Exercise 1.15 that is an ideal, find a finite generating set. Prove that the
set actually generates the ideal.

Exercise 2.4. Prove that an ideal I of R is maximal if and only if R/T is a field.
Exercise 2.5. Prove that R is a field if and only if the only ideals of R are (Og) and R.
Exercise 2.6. Show that if R is a commutative ring, then R[xz] is never a field.

Exercise 2.7. a. Say R is a domain. Show that if a polynomial in R[z] is a unit, then it is a nonzero constant.

b. Say R =k is a field. Then the converse is true: if a polynomial in k[z] is a nonzero constant, it is a unit.

c. Show that (22 + 1)2 = 1 in (Z/4)[z]. Conclude that the hypothesis in part (a) that R be a domain cannot
be removed in general.

Definition 2.2. Let A be a domain. An element f € A is called irreducible if f # 0, f is not a unit, and for
any factorization f = gh, either g or h is a unit.

Exercise 2.8. Let f € k[z] be a non-constant polynomial in one variable. Prove that the following are
equivalent: (1) k[z]/(f) is a field. (2) k[z]/(f) is an integral domain. (3) f is irreducible.

Exercise 2.9. Let f =Y? — X3 € k[X,Y]. Show f is irreducible. Is k[X,Y]/(f) a field, an integral domain,
or neither?

Definition 2.3. Let R be a commutative ring with identity and let I be an ideal of R. The radical of I is the
following set: rad(I) = {x € R | 2" € I for some n > 0}. Other common notations include v/T and r(I).

Exercise 2.10. Let R = Z. Find the radicals of the ideals: (12), (14), (16), (18).

Exercise 2.11. Prove the following statements:

rad(I) is an ideal of R. [HINT: To show closure under addition, use the binomial theorem.]
I Crad(I).

rad(I) = rad(rad(I)).

rad(IJ) =rad(I N J) = rad(l) Nrad(J).
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rad(/) = R if and only if I = R. [HINT: Use 1 € R/]

rad(I + J) = rad(rad(I) + rad(J)).

I C J implies rad(I) C rad(J).

Suppose I = (f1,..., fm). Then rad(I) C rad(J) if and only if for each i = 1,2,...,m there exists a positive
integer n; such that f'* € J.

Suppose I = (f1,...,fs) and J = (g1,...,9¢). Then rad(I) = rad(J) if and only if for each i = 1,2,...,s
there exists a positive integer n; such that f;"* € J, and for each j = 1,2, ...,¢ there exists a positive integer
m; such that g;”j el

j. Suppose I C J and that J = (¢1,...,6¢). Then rad(I) = rad(J) if and only if for each j = 1,2,...,¢ there
exists an integer m; such that g;nj el

Exercise 2.12. Let I and J be ideals of R.
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a. Prove that I N J is an ideal.
b. Show by example that the set of products {zy : z € I,y € J} need not be an ideal.
c. But show that the set of finite sums of products of elements of I and J is an ideal. That is, show the set
{37 i zryk :n >0, and for each k, x, € I,y; € J} is an ideal.
It is called the product ideal of I and J and denoted IJ.
d. Prove that IJ CINJ.
e. Show by example that IJ and I N J need not be equal.

Exercise 2.13. Say [ is generated by the set S and J is generated by the set T. True or false:

a. I'NJ is generated by SNT.
b. IJ is generated by {st:s € S,t € T}.
c. I? = IT is generated by {s?:s € S}.

(For “true”, give a proof; for “false”, give a counterexample.)
Paper Exercise 2.14. Let I be the same ideal as in exercise 2.2. Find a generating set for I2. Repeat

exercise 2.2 for I2.

Let Xi,...,X4 be variables. For any vector of non-negative integers o € R? we may write X® to denote
X7 X3 Also, we may write k[X] to denote k[X1,..., Xq4], provided it is clear from context whether X
denotes a single variable or the collection of variables X1, ..., X .

Exercise 2.15. Let X1, ..., X4 be variables. We use the notation above, so X denotes the collection of variables.
Let ¢ X* be a nonzero monomial, and let f(X),g(X) € k[X] be polynomials none of whose terms is divisible
by ¢ X“. Prove that none of the terms of f(X) — ¢g(X) is divisible by ¢, X.

Exercise 2.16. Let R = k[z1,...,24] and m = (z1,...,24)R. Show the following.

a. If I is a monomial ideal such that I # R, then rad(I) = m if and only if for each i = 1,...,d there exists an
integer n; > 0 such that z;" € I.
b. The ideal m is radical, that is, rad(m) = m.

Exercise 2.17. Let I,..., I, be monomial ideals in R = k[z1,...,24] and set m = (x1,...,24)R.

a. Prove that the sum I; + --- + I,, is a monomial ideal.

b. If rad(l;) = --- = rad(I,,) = m, show that rad(Ily +---+ I,,) = m.
c. Prove or disprove: If rad(ly + -+ + I,,) = m, then rad(l;) = - - - = rad(l,) = m.
Exercise 2.18. Let I4,..., I, be monomial ideals in R = k[z1,...,24] and set m = (x1,...,24)R.

a. Prove that the product I - - - I,, is a monomial ideal.



b. If rad(f;) = --- = rad(I,) = m, show that rad(Iy ---I,,) = m.
c. Prove or disprove: If rad([y - - - I,,) = m, then rad(l;) = --- = rad(l,) = m.
Definition 2.4. An ascending chain of ideals is an infinite sequence I1 C I C I3 C ---. An ascending chain

is said to stabilize if there is some N such that for n > N, I, = Iy. A ring R is called Noetherian if every
ascending chain of ideals in R stabilizes (the “ascending chain condition”).

Exercise 2.19. Let I; C I, C --- be an ascending chain of ideals. Then I = JI; = I; UI; U--- is an ideal.

Exercise 2.20. Let A be a Noetherian ring. Show the following.

a.

Every field k is Noetherian. [HINT: What ideals are there? What chains are possible?]

b. If I C A is an ideal, then A/T is Noetherian.

If I C A is an ideal, then there is a finite generating set for I. [HINT: Consider the set of all finitely
generated ideals contained in I. Use the Noetherian condition plus Zorn’s Lemma to show that among all
finitely generated ideals contained in I there is a maximal one. Now that must be I, otherwise adding one
more element to the generating set of the ideal would give a larger ideal, still finitely generated, violating
maximality.]
Conversely, if every ideal in R is finitely generated, then R is Noetherian. [HINT: Given a chain, the union
of the chain is an ideal and hence finitely generated. The members of the generating set must lie in some
ideals in the chain. Take a maximum.]

Hence: A ring R is Noetherian if and only if every ideal of R is finitely generated.
(Hilbert’s Basis Theorem) The ring A[X] is Noetherian. [HINT: Given an ideal I C A[X], show that the set
of leading coefficients of polynomials in I forms an ideal in A. By part (c), that ideal is finitely generated.
For each of those generators a;, pick a lowest-degree polynomial f; with leading coefficient a;. Show the f;
generate I by considering a lowest-degree member of I outside the ideal generated by the f; and obtaining
a contradiction.]

Hence: For a field k, every ideal in a polynomial ring k[X1,. .., X4| is finitely generated.
The previous part implies that k[ X, Y] is Noetherian. Let R C k[X,Y] be the subset of polynomials whose
terms are of the form either ¢X?Y? with b < av/2 and ¢ € k. (Note that constant terms, a = b = 0, meet
this condition, so they are allowed.) For example, X € R but Y ¢ R.

Now, show that R is a subring. Then show that R is not Noetherian.

Thus a subring of a Noetherian ring is not necessarily Noetherian.



