IMMERSE 2007

Algebra Exercises

2. Week 2

Unless otherwise noted, the letters R and A denote commutative rings with unity, the letters I and J denote ideals, the letter k denotes a field, and letters like X_{i} denote variables.
Definition 2.1. Let $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear function and let s be a real number. The closed half space in \mathbb{R}^{n} corresponding to σ and s is the set $\left\{v \in \mathbb{R}^{n}: \sigma(v) \geq s\right\}$. The open half space in \mathbb{R}^{n} corresponding to σ and s is the set $\left\{v \in \mathbb{R}^{n}: \sigma(v)>s\right\}$.
Exercise 2.1. Let $\sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a linear function and let s be a real number. Let Σ be the corresponding closed half space and let Σ° be the corresponding open half space.
a. Show that Σ and Σ° are convex.
b. Show that Σ is the topological closure of Σ° and Σ° is the topological interior of Σ.

Paper Exercise 2.2. For the the monomial ideal $I=\left(X_{0}^{4}, X_{0}^{3} X_{1}^{3}, X_{1}^{4}\right)$ (as on page 3772 of the Hübl paper), determine C, K, σ_{i}, s_{i}, and Σ_{i}, as in Lemma 1.

Exercise 2.3. For each of the sets in Exercise 1.15 that is an ideal, find a finite generating set. Prove that the set actually generates the ideal.
Exercise 2.4. Prove that an ideal I of R is maximal if and only if R / I is a field.
Exercise 2.5. Prove that R is a field if and only if the only ideals of R are $\left(0_{R}\right)$ and R.
Exercise 2.6. Show that if R is a commutative ring, then $R[x]$ is never a field.
Exercise 2.7. a. Say R is a domain. Show that if a polynomial in $R[x]$ is a unit, then it is a nonzero constant. b. Say $R=k$ is a field. Then the converse is true: if a polynomial in $k[x]$ is a nonzero constant, it is a unit.
c. Show that $(2 x+1)^{2}=1$ in $(\mathbb{Z} / 4)[x]$. Conclude that the hypothesis in part (a) that R be a domain cannot be removed in general.
Definition 2.2. Let A be a domain. An element $f \in A$ is called irreducible if $f \neq 0, f$ is not a unit, and for any factorization $f=g h$, either g or h is a unit.
Exercise 2.8. Let $f \in k[x]$ be a non-constant polynomial in one variable. Prove that the following are equivalent: (1) $k[x] /\langle f\rangle$ is a field. (2) $k[x] /\langle f\rangle$ is an integral domain. (3) f is irreducible.

Exercise 2.9. Let $f=Y^{2}-X^{3} \in k[X, Y]$. Show f is irreducible. Is $k[X, Y] /\langle f\rangle$ a field, an integral domain, or neither?

Definition 2.3. Let R be a commutative ring with identity and let I be an ideal of R. The radical of I is the following set: $\operatorname{rad}(I)=\left\{x \in R \mid x^{n} \in I\right.$ for some $\left.n>0\right\}$. Other common notations include \sqrt{I} and $\mathrm{r}(I)$.
Exercise 2.10. Let $R=\mathbb{Z}$. Find the radicals of the ideals: (12), (14), (16), (18).
Exercise 2.11. Prove the following statements:
a. $\operatorname{rad}(I)$ is an ideal of R. [HINT: To show closure under addition, use the binomial theorem.]
b. $I \subseteq \operatorname{rad}(I)$.
c. $\operatorname{rad}(I)=\operatorname{rad}(\operatorname{rad}(I))$.
d. $\operatorname{rad}(I J)=\operatorname{rad}(I \cap J)=\operatorname{rad}(I) \cap \operatorname{rad}(J)$.
e. $\operatorname{rad}(I)=R$ if and only if $I=R$. [HINT: Use $1 \in R$.]
f. $\operatorname{rad}(I+J)=\operatorname{rad}(\operatorname{rad}(I)+\operatorname{rad}(J))$.
g. $I \subseteq J$ implies $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$.
h. Suppose $I=\left(f_{1}, \ldots, f_{m}\right)$. Then $\operatorname{rad}(I) \subseteq \operatorname{rad}(J)$ if and only if for each $i=1,2, \ldots, m$ there exists a positive integer n_{i} such that $f_{i}^{n_{i}} \in J$.
i. Suppose $I=\left(f_{1}, \ldots, f_{s}\right)$ and $J=\left(g_{1}, \ldots, g_{t}\right)$. Then $\operatorname{rad}(I)=\operatorname{rad}(J)$ if and only if for each $i=1,2, \ldots, s$ there exists a positive integer n_{i} such that $f_{i}^{n_{i}} \in J$, and for each $j=1,2, \ldots, t$ there exists a positive integer m_{j} such that $g_{j}^{m_{j}} \in I$.
j. Suppose $I \subseteq J$ and that $J=\left(g_{1}, \ldots, g_{t}\right)$. Then $\operatorname{rad}(I)=\operatorname{rad}(J)$ if and only if for each $j=1,2, \ldots, t$ there exists an integer m_{j} such that $g_{j}^{m_{j}} \in I$.

Exercise 2.12. Let I and J be ideals of R.
a. Prove that $I \cap J$ is an ideal.
b. Show by example that the set of products $\{x y: x \in I, y \in J\}$ need not be an ideal.
c. But show that the set of finite sums of products of elements of I and J is an ideal. That is, show the set $\left\{\sum_{k=1}^{n} x_{k} y_{k}: n \geq 0\right.$, and for each $\left.k, x_{k} \in I, y_{k} \in J\right\}$ is an ideal.

It is called the product ideal of I and J and denoted $I J$.
d. Prove that $I J \subseteq I \cap J$.
e. Show by example that $I J$ and $I \cap J$ need not be equal.

Exercise 2.13. Say I is generated by the set S and J is generated by the set T. True or false:
a. $I \cap J$ is generated by $S \cap T$.
b. $I J$ is generated by $\{s t: s \in S, t \in T\}$.
c. $I^{2}=I I$ is generated by $\left\{s^{2}: s \in S\right\}$.
(For "true", give a proof; for "false", give a counterexample.)
Paper Exercise 2.14. Let I be the same ideal as in exercise 2.2. Find a generating set for I^{2}. Repeat exercise 2.2 for I^{2}.

Let X_{1}, \ldots, X_{d} be variables. For any vector of non-negative integers $\alpha \in \mathbb{R}^{d}$ we may write X^{α} to denote $X_{1}^{\alpha_{1}} \cdots X_{d}^{\alpha_{d}}$. Also, we may write $k[X]$ to denote $k\left[X_{1}, \ldots, X_{d}\right]$, provided it is clear from context whether X denotes a single variable or the collection of variables X_{1}, \ldots, X_{d}.

Exercise 2.15. Let X_{1}, \ldots, X_{d} be variables. We use the notation above, so X denotes the collection of variables. Let $c_{\alpha} X^{\alpha}$ be a nonzero monomial, and let $f(X), g(X) \in k[X]$ be polynomials none of whose terms is divisible by $c_{\alpha} X^{\alpha}$. Prove that none of the terms of $f(X)-g(X)$ is divisible by $c_{\alpha} X^{\alpha}$.
Exercise 2.16. Let $R=k\left[x_{1}, \ldots, x_{d}\right]$ and $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right) R$. Show the following.
a. If I is a monomial ideal such that $I \neq R$, then $\operatorname{rad}(I)=\mathfrak{m}$ if and only if for each $i=1, \ldots, d$ there exists an integer $n_{i}>0$ such that $x_{i}^{n_{i}} \in I$.
b. The ideal \mathfrak{m} is radical, that is, $\operatorname{rad}(\mathfrak{m})=\mathfrak{m}$.

Exercise 2.17. Let I_{1}, \ldots, I_{n} be monomial ideals in $R=k\left[x_{1}, \ldots, x_{d}\right]$ and set $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right) R$.
a. Prove that the sum $I_{1}+\cdots+I_{n}$ is a monomial ideal.
b. If $\operatorname{rad}\left(I_{1}\right)=\cdots=\operatorname{rad}\left(I_{n}\right)=\mathfrak{m}$, show that $\operatorname{rad}\left(I_{1}+\cdots+I_{n}\right)=\mathfrak{m}$.
c. Prove or disprove: If $\operatorname{rad}\left(I_{1}+\cdots+I_{n}\right)=\mathfrak{m}$, then $\operatorname{rad}\left(I_{1}\right)=\cdots=\operatorname{rad}\left(I_{n}\right)=\mathfrak{m}$.

Exercise 2.18. Let I_{1}, \ldots, I_{n} be monomial ideals in $R=k\left[x_{1}, \ldots, x_{d}\right]$ and set $\mathfrak{m}=\left(x_{1}, \ldots, x_{d}\right) R$.
a. Prove that the product $I_{1} \cdots I_{n}$ is a monomial ideal.
b. If $\operatorname{rad}\left(I_{1}\right)=\cdots=\operatorname{rad}\left(I_{n}\right)=\mathfrak{m}$, show that $\operatorname{rad}\left(I_{1} \cdots I_{n}\right)=\mathfrak{m}$.
c. Prove or disprove: If $\operatorname{rad}\left(I_{1} \cdots I_{n}\right)=\mathfrak{m}$, then $\operatorname{rad}\left(I_{1}\right)=\cdots=\operatorname{rad}\left(I_{n}\right)=\mathfrak{m}$.

Definition 2.4. An ascending chain of ideals is an infinite sequence $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots$. An ascending chain is said to stabilize if there is some N such that for $n \geq N, I_{n}=I_{N}$. A ring R is called Noetherian if every ascending chain of ideals in R stabilizes (the "ascending chain condition").
Exercise 2.19. Let $I_{1} \subseteq I_{2} \subseteq \cdots$ be an ascending chain of ideals. Then $I=\bigcup I_{i}=I_{1} \cup I_{2} \cup \cdots$ is an ideal.
Exercise 2.20. Let A be a Noetherian ring. Show the following.
a. Every field k is Noetherian. [HINT: What ideals are there? What chains are possible?]
b. If $I \subset A$ is an ideal, then A / I is Noetherian.
c. If $I \subset A$ is an ideal, then there is a finite generating set for I. [HINT: Consider the set of all finitely generated ideals contained in I. Use the Noetherian condition plus Zorn's Lemma to show that among all finitely generated ideals contained in I there is a maximal one. Now that must be I, otherwise adding one more element to the generating set of the ideal would give a larger ideal, still finitely generated, violating maximality.]
d. Conversely, if every ideal in R is finitely generated, then R is Noetherian. [HINT: Given a chain, the union of the chain is an ideal and hence finitely generated. The members of the generating set must lie in some ideals in the chain. Take a maximum.]

Hence: A ring R is Noetherian if and only if every ideal of R is finitely generated.
e. (Hilbert's Basis Theorem) The ring $A[X]$ is Noetherian. [HINT: Given an ideal $I \subset A[X]$, show that the set of leading coefficients of polynomials in I forms an ideal in A. By part (c), that ideal is finitely generated. For each of those generators a_{i}, pick a lowest-degree polynomial f_{i} with leading coefficient a_{i}. Show the f_{i} generate I by considering a lowest-degree member of I outside the ideal generated by the f_{i} and obtaining a contradiction.]

Hence: For a field k, every ideal in a polynomial ring $k\left[X_{1}, \ldots, X_{d}\right]$ is finitely generated.
f. The previous part implies that $k[X, Y]$ is Noetherian. Let $R \subset k[X, Y]$ be the subset of polynomials whose terms are of the form either $c X^{a} Y^{b}$ with $b \leq a \sqrt{2}$ and $c \in k$. (Note that constant terms, $a=b=0$, meet this condition, so they are allowed.) For example, $X \in R$ but $Y \notin R$.

Now, show that R is a subring. Then show that R is not Noetherian.
Thus a subring of a Noetherian ring is not necessarily Noetherian.

