
IMMERSE 2007

Algebra Exercises

1. Week 1

Unless noted otherwise, the letters R and A denote commutative rings with identity. The letters I and J
denote ideals.

Exercise 1.1. Let R be a ring (not necessarily commutative, not necessarily with identity). For any x ∈ R,
x · 0R = 0R · x = 0R.

Exercise 1.2. Let R be a commutative ring with identity and I an ideal of R.

a. Show that 0R ∈ I.
b. Show that if a ∈ I, then −a ∈ I.
c. Show that if a, b ∈ I, then a− b ∈ I.
d. Show that the set {0R} is an ideal of R.
e. Show that R is an ideal of R.

Exercise 1.3. Let r ∈ R and set
rI = {ra | a ∈ I} .

Show that rI is an ideal of R.

Exercise 1.4. Prove that the following statements are equivalent:

(i) I = R.
(ii) 1R ∈ I.
(iii) I contains a unit.

Exercise 1.5. Let {Iα}α∈Λ be a collection of ideals of R, where Λ is an index set. (Do not assume that Λ
is finite or even countable.) Set K = ∩α∈ΛIα. Prove that K is an ideal of R. (Observe that K ⊆ Iα for each
α ∈ Λ.)

Exercise 1.6. a. Let f ∈ R. Prove that (f)R is an ideal of R and that f ∈ (f)R.
b. Let f1, . . . , fs be elements of R. Prove that (f1, . . . , fs)R is an ideal of R and that f1, . . . , fs ∈

(f1, . . . , fs)R.
c. Let S ⊆ R. Prove that (S)R is an ideal of R and that S ⊆ (S)R.

Exercise 1.7. Let S ⊆ R. Prove that the following statements are equivalent:

(i) S ⊆ I.
(ii) (S)R ⊆ I.

This fact is useful when you want to show that one ideal is contained in another.

Exercise 1.8. Let S ⊆ R. Let {Iα}α∈Λ denote the collection of ideals of R that contain S. Prove the
equality (S)R = ∩α∈ΛIα.

Exercise 1.9. Let S ⊆ R, and set I = (S)R. Prove that I is the unique smallest ideal containing the set S.

Exercise 1.10. a. Give an example to show that I ∪ J need not be an ideal.
b. Prove that I ∪ J is an ideal of R if and only if either I ⊆ J or J ⊆ I.
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Exercise 1.11. Let I and J be ideals of R. Set

I + J = {a + b | a ∈ I, b ∈ J} .

Prove that I + J is an ideal of R and that I ∪ J ⊆ I + J .

Exercise 1.12. Show that I + J is the unique smallest ideal containing I ∪ J .

Exercise 1.13. Let I = (f1, . . . , fn)R and let J = (g1, . . . , gm)R. Prove that I + J is generated by the set
{f1, . . . , fn, g1, . . . , gm}.

Exercise 1.14. Determine whether the given polynomial in is in the given ideal I ⊆ R[x].

(1) f(x) = x2 − 3x + 2, I =< x− 2 >
(2) f(x) = x5 − 4x + 1, I =< x3 − x2 + x >
(3) f(x) = x2 − 4x + 4, I =< x4 − 6x2 + 12x− 8, 2x3 − 10x2 + 16x− 8 >
(4) f(x) = x3 − 1, I =< x9 − 1, x5 + x3 − x2 − 1 >

Exercise 1.15. Let R = Z[x]. Prove or disprove:

(1) The set K of all constant polynomials in R is an ideal of R.
(2) The set I of all polynomials in R with even constant terms is an ideal of R.
(3) The set I of all polynomials in R with odd constant terms is an ideal of R.

Exercise 1.16. Use Exercise 1.7 to prove the following equalities in the polynomial ring R = Q[x, y]:

a. (x + y, x− y)R = (x, y)R.
b. (x + xy, y + xy, x2, y2)R = (x, y)R.
c. (2x2 + 3y2 − 11, x2 − y2 − 3)R = (x2 − 4, y2 − 1)R.

This illustrates that the same ideal can have many different generating sets and that different generating
sets may have different numbers of elements.

Exercise 1.17. Let A be a commutative ring with identity. Let f and g be monomials in R = A[x1, . . . , xd].
If (f)R = (g)R, show that f = g.

Exercise 1.18. Let f be a monomial in R = A[x1, . . . , xd] and let n be an integer, n ≥ 1. Prove that
deg(f) ≤ n if and only if there exists a monomial g of degree n such that g ∈ (f)R.

Exercise 1.19. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the
sum of a nilpotent element and a unit is a unit.

Exercise 1.20. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with
coefficients in A. Let f = a0 + a1x + · · ·+ anxn ∈ A[x]. Prove that:

(1) f is a unit in A[x] ⇔ a0 is a unit in A and a1, a2, . . . , an are nilpotent. [HINT: If b0+b1x+ · · ·+bmxm

is the inverse of f , prove by induction on r that ar+1
n bm−r = 0. Hence show that an is nilpotent and

use the previous exercise.
(2) f is nilpotent ⇔ a0, a1, . . . , an are nilpotent. [HINT: choose a monomial ordering and argue by

induction on the number of summands.]
(3) f is a zero-divisor ⇔ there exists a 6= 0 in A such that af = 0. [HINT: Choose a polynomial

g = b0+b1x+· · ·+bmxm of least degree m such that fg = 0. Then anbm = 0, hence ang = 0 (because
ang annihilates f and has degree < m). Now show by induction that an−rg = 0 (0 ≤ r ≤ n).]


