
IMMERSE 2007

Algebra Exercises

6. Supplemental Exercises

Exercise 6.1. This exercise goes back to review the definition of a ring, and explore an object that is
“almost a ring”. It should be significantly more elementary than most of the other exercises in the whole
course.

The tropical semiring T, also called the min-plus algebra, is defined as follows. As a set, T = R∪{∞}.
There are two operations, denoted ⊕ (tropical addition) and � (tropical multiplication), and defined by the
following formulas:

a⊕ b = min{a, b}, a� b = a + b (ordinary addition)
Show the following:

a. Find 3⊕ 7 and 3� 7.
b. Show ⊕ and � are associative.
c. Show ⊕ and � are commutative.
d. Show � distributes over ⊕.
e. Is there an identity element for ⊕? Are there tropical additive inverses? Explain.
f. Is there an identity element for �? Are there tropical multiplicative inverses? Explain.
g. In R2, graph the tropical linear polynomial y = (3� x)⊕ 7.
h. In R2, graph the tropical quadratic polynomial y = (3� x� x)⊕ (7� x)⊕ 12. The expression x� x can

be abbreviated x�2 or simply x2.
i. Show the “freshman’s dream” holds for all powers in tropical geometry: (x⊕ y)�n = x�n ⊕ y�n.
j. What is the “characteristic” of T?

Exercise 6.2. Determine all subsets S of R1 such that both S and its complement are convex; do the same
for R2 and R3. (For simplicity, you may want to just take S to be closed and its complement open.)

Definition 1. Let R be a commutative ring with identity and let I and J be ideals of R. The quotient
ideal of I and J , or colon ideal, is

(I :R J) = {r ∈ R | rJ ⊆ I} .

It is often written simply (I : J) if the ring R is clear from the context.

Exercise 6.3. Let I, J, K be ideals of R and let {Iλ}λ∈Λ be a collection of ideals of R. Prove the following
statements:

a. (I : J) is an ideal of R.
b. (I : J) = R if and only if J ⊆ I.
c. I ⊆ (I : J).
d. (I : J) J ⊆ I.
e. ((I : J) : K) = (I : JK) = ((I : K) : J).
f.
(⋂

λ∈Λ Iλ : J
)

=
⋂
λ∈Λ (Iλ : J).

g.
(
J :
∑
λ∈Λ Iλ

)
=
⋂
λ∈Λ (J : Iλ). [HINT: Use the fact that

∑
Iλ is the ideal generated by

⋃
Iλ, which you

proved in Exercise 1.11 and Exercise 1.12.]

Exercise 6.4. Let I be a radical ideal and J an arbitrary ideal. Prove that (I : J) is radical.
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Exercise 6.5. Let I be an integrally closed ideal and J an arbitrary ideal. Prove that (I : J) is integrally
closed.

Exercise 6.6. Let I and J be monomial ideals. Show that (I : J) is a monomial ideal. Also, show that if
I and J are homogeneous ideals, so is (I : J).

Exercise 6.7. Let I and J be ideals in R. Show the following.

a. We have ((I : Ja) : J) =
(
I : Ja+1

)
.

b. If a ≤ b then (I : Ja) ⊆
(
I : Jb

)
. By the previous part, if we keep coloning by J , the ideal just keeps

growing.
c. The saturation of I with respect to J ,

(I : J∞) =
⋃
a≥0

(I : Ja) ,

is an ideal containing I, and such that ((I : J∞) : Ja) = (I : J∞) for all a. (This justifies the name
“saturated”: putting more Js doesn’t change it any more.)

d. If I and J are monomial, so is (I : J∞).
e. If I and J are homogeneous, so is (I : J∞).
f. If I is a homogeneous ideal, we define the saturation of I to be Isat = (I : m∞). Show this is a

homogeneous ideal containing I and that (Isat)sat = Isat.
g. If I ⊂ J are homogeneous then Isat ⊂ J sat.
h. For I homogeneous we have I ⊂ Isat ⊂ rad(I). Show a radical homogeneous ideal is saturated.
i. For I homogeneous, Isat is the unique smallest saturated ideal containing I. (A homogeneous ideal is

saturated if it equals its saturation. Here, “smallest” means Isat is contained in any saturated ideal
containing I.)

j. Let I be homogeneous and d ≥ 0. The degree d piece of I, denoted Id, is the set of homogeneous forms
of degree d in I (together with 0). Show that each Id is a vector space over k, contained in md. Show
that md is finite dimensional, and hence so is Id.

k. For I homogeneous, Id = (Isat)d for d � 0. [HINT: Use the Noetherian property. It says Isat is finitely
generated. So there is a maximum degree a of the generators, and a b such that all the generators multiply
mb into I (taking the maximum of the b’s of the various generators). Show that Id = (Isat)d for d ≥ a+b.]

l. For I and J homogeneous, Isat = J sat if and only if Id = Jd for d� 0.

Exercise 6.8. Let I1 ⊂ I2 ⊂ . . . be an ascending chain of ideals and J =
⋃

Ii be their union. Show the
following.

a. If each Ii is prime, so is J .
b. If each Ii is radical, so is J .
c. If each Ii is homogeneous (in a polynomial ring), so is J . Ditto, monomial. Ditto, homogeneous and

saturated.
d. (Harder): If each Ii is integrally closed, so is J .

Exercise 6.9. Let A be any commutative ring with 1 (not necessarily Noetherian) and let R = A[x1, . . . , xn].
Let I ⊂ R be an ideal generated by a set of monomials. (Here, a monomial is a polynomial with one term
and coefficient 1.) Then show I is generated by a finite set of monomials. [HINT: Imitate the proof given in
class that the lexicographic order is a well-ordering.]

Thus, even though R is not Noetherian if A is not, at least all ideals generated by monomials are actually
finitely generated by monomials.

Exercise 6.10. Prove the statement in Hübl’s Remark 4, (ii): that K = F + Rd+1
≥0 .
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Challenge Exercise 6.11. Let I ⊂ R = k[x1, . . . , xn] be a monomial ideal and m = (x1, . . . , xn). Prove or
disprove the following.

a. If I satisfies NN, then so does I2. (What about higher powers?)
b. If I satisfies NN, then so does mI.
c. If I2 satisfies NN, then so does I.
d. If mI satisfies NN, then so does I.

If possible, salvage those which are false—that is, change the statement so it becomes true. For example,
strengthen the hypothesis or weaken the conclusion. (I have no idea if these are true or false; trivial or
impossible.)

Challenge Exercise 6.12. For those of you who like polyhedra: Define property NN for polyhedra. You
may want to restrict to bounded polyhedra (i.e., polytopes), or lattice polytopes (i.e., convex hull of points
in Zn), or polyhedra P such that P + v ⊆ P if and only if v ∈ Rn≥0, or possibly other reasonable restrictions.
Once you have a good definition of property NN, rewrite Hübl’s paper, proving all the analogous theorems
for polyhedra. Write and publish it collaboratively with your IMMERSE classmates and/or teachers.

Challenge Exercise 6.13. For those of you who like algebra: Study Ip/q = {r : rq ∈ Ip} and Ĩp/q =⋃
{Ir/s : r

s = p
q }. Relate them to the better-known ideals I

p/q
= {r : rq ∈ Ip}. Write and publish

your results collaboratively with your IMMERSE classmates and/or teachers. (Warning: Results are not
guaranteed. This may lead nowhere.)

Challenge Exercise 6.14. Generalize Hübl’s Corollary 6 to higher dimensions, that is, more than 2 vari-
ables.

Suggestion: In R2, a line ax + by = c with a, b ∈ Z and gcd(a, b) = 1 has slope equal to an integer or the
reciprocal of an integer if and only if a = 1 or b = 1. Perhaps rephrasing Corollary 6 using this idea would
allow for a nice generalization.


