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LSyzygies of Graded Modules

Graded Betti numbers

The coefficients of the Hilbert polynomial are the fundamental
numerical invariants of a graded S-module.

The graded Betti numbers 3; of a minimal resolution

O—~M—Fy—F —...—Fp1<0

are finer numerical invariants!



Cohomology Tables of Coherent Sheaves
LGeometry of Syzygies

Canonical curves of genus 7 [Schreyer 1986]

The Betti table of a smooth canonically embedded curve
C c IP® of genus g = 7 is one of the following:
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The Betti table of a smooth canonically embedded curve
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L Geometry of Syzygies

Canonical curves of genus 7 [Schreyer 1986]

The Betti table of a smooth canonically embedded curve
C c IP® of genus g = 7 is one of the following:
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LThe Boij-Séderberg Conjectures

Attempting to prove the Multiplicity Conjectures of Herzog,
Huneke and Srinivasan, Boij and Séderberg [2007] made a big
step forward towards an answer of the fundamental question:

Which Betti tables are possible?
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LThe Boij-Séderberg Conjectures

Attempting to prove the Multiplicity Conjectures of Herzog,
Huneke and Srinivasan, Boij and Séderberg [2007] made a big
step forward towards an answer of the fundamental question:

Which Betti tables are possible?

Let us think of a Betti table 3(M) = (3;(M)) as an element of
the vector space
Do

JEZL
Since (M & N) = g(M) + 3(N), it is natural to consider the
convex cone spanned by all possible Betti tables.
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LThe Boij-Séderberg Conjectures

Attempting to prove the Multiplicity Conjectures of Herzog,
Huneke and Srinivasan, Boij and Séderberg [2007] made a big
step forward towards an answer of the fundamental question:

Which Betti tables are possible?

Let us think of a Betti table 3(M) = (3;(M)) as an element of
the vector space
Do

JEZ
Since (M & N) = g(M) + 3(N), it is natural to consider the

convex cone spanned by all possible Betti tables.
The Boij-S6derberg conjectures describe this cone completely!



Cohomology Tables of Coherent Sheaves

LThe Boij-Séderberg Conjectures

Pure Resolutions

A pure resolution is the resolution of a CM-Module, which has
shape

0 — M — S(—dp)™ «— S(—d)* «— ... S(—ds)* 0
Proposition

The Betti numbers (3; = [3; 4, of a pure resolution are determined
by the degree sequence

(do, dt,...,de)

up to a common factor.
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LThe Boij-Séderberg Conjectures

Pure Resolutions

A pure resolution is the resolution of a CM-Module, which has
shape

0—M— S(—dp)® — S(—d;)* — ... — S(—d;)% — 0
Proposition
The Betti numbers (3; = [3; 4, of a pure resolution are determined
by the degree sequence

(do, dt,...,de)

up to a common factor.

Proof: The numerator of the Hilbert series "7 (—1)/3;z%
vanishes to order ¢ at z = 1. This gives ¢ equations for ¢ + 1
Betti numbers gy, . . ., Ge. O
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LThe Boij-Séderberg Conjectures

Know any modules with these resolutions?

The following Betti tables belong to the degree sequences

(0,2,3,5,6,8)

1 - - _
~ 10 16 —
- - - 16

respectively.
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LThe Boij-Séderberg Conjectures

The Boij-Sdderberg Conjectures [2007]

Now Theorems ( — and Schreyer, JAMS, 2009)

1. Existence. For every degree sequence there exists a
CM-module with a pure resolution.

2. Spanning. The cone of Betti tables is generated by Betti
tables of pure resolutions.

3. Decomposition. Each Betti table is a unique positive
rational linear combination of pure Betti tables in a unique
chain of degree sequences.

Here "chain” refers to the natural partial order of degree
sequences

(d07d17"‘7d0)S(e()7e17"'7eC)<:>di§ei'
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LThe Boij-Séderberg Conjectures

General Modules, and the Multiplicity Conjecture

Theorem (Boij-Soderberg, 2008, the non-CM case)

The cone of Betti tables of arbitrary modules is generated by
Betti tables of pure complexes of CM-modules of various

codimensions.
Corollary

The Multiplicity Conjectures of Herzog, Huneke and Srinivasan
(and more) are true!
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LCohomology Tables

Cohomology Tables

Let £ be a coherent sheaf on P, for example a vector bundle.
We have the dimensions of the cohomology groups

v = H(B", ().

We identify the cohomology table v(&) = (v;) with an element

of
H QH-H ]

JEZL
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LCohomology Tables

Supernatural Sheaves

A sheaf £ on P has natural cohomology, if for each twist k at
most one group H'(E(k)) # 0. It is supernatural, if in addition
the Hilbert polynomial

n

xe) = "E (- 20
T k=1

has pairwise distinct integral roots z = (zy > ... > zp).

(Here nis the dimension of the support of the sheaf.)

We denote the cohomology table of a supernatural sheaf with
root sequence z and degree n! by +*
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I—Cohomology Tables

Existence

Theorem

There exists supernatural sheaf bundle for any given zero
sequence z = (zy,...,Zs).
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LCohomology Tables

Example

The Cohomology table of a supernatural rank 3 vector bundle
on P2 with roots z = (3, —1,—4) is

9 45 16 0 0 0 0 0 0 O | 3
0 0 0 6 50 0 0 0 O | 2
0 0 0 0 0 6 10 9 0 O |1
O 0 0 0 0 0 0 0 20 54 | o
) = 3 A

Here the entry in position (k, /) is the dimension of the
cohomology group H'(E(k — i)).



Cohomology Tables of Coherent Sheaves
L Positivity Theorems

Some Pairings

Main idea: consider the pairing

(B,7) = Z (1) Bk —k

{iJ,Kkli<i}
We abbreviate

(M. &) = (F,&) = (B(F),~(€))
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L Positivity Theorems

Positivity Theorem 1

Theorem
Let F be any free resolution of an S-module, and let £ be any
coherent sheaf. Then

(F,€)>0

Moreover, if

0 > regM+regé&, and
0 > regFi_1+reg ®x HE(k) foralli> 0,

then (F,&) = 0.
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L Positivity Theorems

Truncation

We modify (—, £) by a suitable truncation

BsYer = > (=) Bikvj,—k
{ijKlj<i—2 or j<r}
- Z 5T+1,k'77',7k

{17/7k|/:I_1 :T7kSC+1}

+ Z ﬂT,k,YT,—k

{i.j.Klj=i=r,k<c}

Theorem
The functional (—, £)+ ¢ is non negative on minimal free
resolutions.
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LCohomology of Coherent Sheaves

An analogue of Boij-Soderberg for vector bundles

Theorem (— and Schreyer)

The cohomology table of an arbitrary vector bundle onP" s a
finite positive linear combination of cohomology tables of
supernatural bundles.
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LCohomology of Coherent Sheaves

Boij-Soderberg analog for coherent sheaf

If Z is an infinite set of zero sequences, (gz);c~ a sequence of
numbers, and ~ is a cohomology table, we write

Y =2_,c79-7%, to mean thateach entry > g:7/,
converges to v; g-
Theorem (E-S, 2009)
Let ~(F) be the cohomology table of a coherent sheaf F on P".
There is a unique chain of zero-sequences Z and a unique
expression

’Y(f) = Z CIz’YZa

zeZ
where the q, are positive numbers.
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LCohomology of Coherent Sheaves

Example
The ideal sheaf Z,, of a point in P2 has the cohomology table
10 6 3 1 2
1 1 1 1 1 1
2 5 9 14 ... 0
—4 -3 2 -1 01 23 4 - | d\i

where we dropped zero entries for the better visibility of the
shape. Then

Y(Zp) = Z T A
k=2

with
2

o) = k—Dk(k+ 1)
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LCohomology of Coherent Sheaves

Idea of proof
Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

[@RE \V]

2 5 9 14
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LCohomology of Coherent Sheaves

Idea of proof
Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1 2
1 1 1 1 1 1
2 5 9 14 0
in our case v(0—2),
24 15 8 3 2
1 1
3 8 15 24 0
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LCohomology of Coherent Sheaves

|dea of proof
Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

O =N

2 59 14 ...

in our case v(%~2), and subtract as much as possible,

24 15 8 3 2
1
0

3 8 15 24
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LCohomology of Coherent Sheaves

|dea of proof
Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

O =N

2 59 14 ...

in our case v(%~2), and subtract as much as possible,

24 15 8 3 2
1
0

3 8 15 24

such that corners stay non-negative:
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LCohomology of Coherent Sheaves

|dea of proof

Look at the supernatural sheaf with largest zero-sequence with
the same upper shape as the given sheaf,

10 6 3 1
11 1 1 1

O =N

2 59 14 ...

in our case v(%~2), and subtract as much as possible,

24 15 8 3 2

1

3 8 15 24 0

such that corners stay non-negative: v — 37(0=2

2 1

10 2
111 1 2 1
1.1 46 0




Cohomology Tables of Coherent Sheaves

I—Cohomology of Coherent Sheaves

Idea of proof, 2nd step

Now look at
2 1 3 2
1111 2 1
1 L 46 0
subtract a multiple of 4(%—3):
18 10 4 2
2 2 1
4 10 18 28 0
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LCohomology of Coherent Sheaves

Idea of proof, 2nd step

Now look at
2 1 3 2
1111 2 1
1 L 46 0

subtract a multiple of 4(%—3):

18 10 4

4 10 18 28

N
N
o =N

We get y — 47(0-2) — 14(0-3),

11

2 6

111 31 1
2 3 5 1
3 2 2 3
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LCohomology of Coherent Sheaves

Idea of proof, 2nd step

Now look at
2 1 3 2
1111 2 1
1 L 46 0

subtract a multiple of 4(%—3):

18 10 4

4 10 18 28

We get v — $7(0-2 — 14(0-3) Continue ... !

11

2 6

111 31 1
2 3 5 1
3 2 2 3
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I—Cohomology of Coherent Sheaves

Idea of proof

i.(0,-2) _ 1,.(0,-3)_ 1_(0,—4
= 170 109 1 (0-4)

1
10
1 1

3o
B~
[6;1]\V)
o=
B

§1[¥e)

el

o =N
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Idea of proof

i.(0,-2) _ 1,.(0,-3)_ 1_(0,—4
= 170 109 1 (0-4)

1
0
1 1

_.
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o =N

el

Proposition (Key claim)

All entries of the table stay non-negative through out this
process.
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LCohomology of Coherent Sheaves

Idea of proof
1,(0,—2) _ 1 0,-3) _ 1 .(0,—-4) _ _ 1 (0,—7
Y 150D 1008 L 404 1 (0)
1

1 2
¥y 2w o3 118 131 1
28 28 1 14 28 4 2 17 27 19 0

7 28 28 14

Proposition (Key claim)

All entries of the table stay non-negative through out this
process.
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LCohomology of Coherent Sheaves

Idea of proof

1,(0,—2) _ 1 0,-3) _ 1 .(0,—-4) _ _ 1 (0,—7
Y 150D 1008 L 404 1 (0)
1 2
¥y 2w o3 118 131 1
28 28 1 14 28 4 17 27 19 0

NIN
Bl
o
Bl
o]
N
N

Proposition (Key claim)
All entries of the table stay non-negative through out this
process.

Thanks!
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