Cohomology Tables of Coherent Sheaves

David Eisenbud and Frank-Olaf Schreyer

Joint Mathematics Meeting, Washington DC, January 2009

Overview

- 1. Syzygies of Graded Modules
- 2. Geometry of Syzygies
- 3. The Boij-Söderberg Conjectures
- 4. Positivity Theorems
- 5. Cohomology Tables of Coherent Sheaves on \mathbb{P}^n

Graded Betti numbers

The coefficients of the Hilbert polynomial are the fundamental numerical invariants of a graded *S*-module.

The graded Betti numbers β_{ij} of a minimal resolution

$$0 \leftarrow M \leftarrow F_0 \leftarrow F_1 \leftarrow \ldots \leftarrow F_{n+1} \leftarrow 0$$

are finer numerical invariants!

Geometry of Syzygies

Canonical curves of genus 7 [Schreyer 1986]

The Betti table of a smooth canonically embedded curve $C \subset \mathbb{P}^6$ of genus g = 7 is one of the following:

Canonical curves of genus 7 [Schreyer 1986]

The Betti table of a smooth canonically embedded curve $C \subset \mathbb{P}^6$ of genus g = 7 is one of the following:

Geometry of Syzygies

Canonical curves of genus 7 [Schreyer 1986]

The Betti table of a smooth canonically embedded curve $C \subset \mathbb{P}^6$ of genus g = 7 is one of the following:

Attempting to prove the Multiplicity Conjectures of Herzog, Huneke and Srinivasan, Boij and Söderberg [2007] made a big step forward towards an answer of the fundamental question:

Which Betti tables are possible?

Attempting to prove the Multiplicity Conjectures of Herzog, Huneke and Srinivasan, Boij and Söderberg [2007] made a big step forward towards an answer of the fundamental question:

Which Betti tables are possible?

Let us think of a Betti table $\beta(M) = (\beta_{ij}(M))$ as an element of the vector space

$$\bigoplus_{i\in\mathbb{Z}}\mathbb{Q}^{n+2}.$$

Since $\beta(M \oplus N) = \beta(M) + \beta(N)$, it is natural to consider the convex cone spanned by all possible Betti tables.

Attempting to prove the Multiplicity Conjectures of Herzog, Huneke and Srinivasan, Boij and Söderberg [2007] made a big step forward towards an answer of the fundamental question:

Which Betti tables are possible?

Let us think of a Betti table $\beta(M) = (\beta_{ij}(M))$ as an element of the vector space

$$\bigoplus_{i\in\mathbb{Z}}\mathbb{Q}^{n+2}.$$

Since $\beta(M \oplus N) = \beta(M) + \beta(N)$, it is natural to consider the convex cone spanned by all possible Betti tables. The Boij-Söderberg conjectures describe this cone completely!

Pure Resolutions

A pure resolution is the resolution of a CM-Module, which has shape

$$0 \leftarrow M \leftarrow S(-d_0)^{\beta_0} \leftarrow S(-d_1)^{\beta_1} \leftarrow \ldots \leftarrow S(-d_c)^{\beta_c} \leftarrow 0$$

Proposition

The Betti numbers $\beta_i = \beta_{i,d_i}$ of a pure resolution are determined by the degree sequence

$$(d_0, d_1, \ldots, d_c)$$

up to a common factor.

Pure Resolutions

A pure resolution is the resolution of a CM-Module, which has shape

$$0 \leftarrow M \leftarrow S(-d_0)^{\beta_0} \leftarrow S(-d_1)^{\beta_1} \leftarrow \ldots \leftarrow S(-d_c)^{\beta_c} \leftarrow 0$$

Proposition

The Betti numbers $\beta_i = \beta_{i,d_i}$ of a pure resolution are determined by the degree sequence

$$(d_0, d_1, \ldots, d_c)$$

up to a common factor.

Proof: The numerator of the Hilbert series $\sum_{i=0}^{c} (-1)^{i} \beta_{i} z^{d_{i}}$ vanishes to order c at z=1. This gives c equations for c+1 Betti numbers $\beta_{0}, \ldots, \beta_{c}$.

The Boij-Söderberg Conjectures

Know any modules with these resolutions?

The following Betti tables belong to the degree sequences

respectively.

The Boij-Söderberg Conjectures [2007]

Now Theorems (– and Schreyer, JAMS, 2009)

- Existence. For every degree sequence there exists a CM-module with a pure resolution.
- 2. Spanning. The cone of Betti tables is generated by Betti tables of pure resolutions.
- Decomposition. Each Betti table is a unique positive rational linear combination of pure Betti tables in a unique chain of degree sequences.

Here "chain" refers to the natural partial order of degree sequences

$$(d_0, d_1, \ldots, d_c) \leq (e_0, e_1, \ldots, e_c) \Leftrightarrow d_i \leq e_i$$

General Modules, and the Multiplicity Conjecture

Theorem (Boij-Söderberg, 2008, the non-CM case)

The cone of Betti tables of arbitrary modules is generated by Betti tables of pure complexes of CM-modules of various codimensions.

Corollary

The Multiplicity Conjectures of Herzog, Huneke and Srinivasan (and more) are true!

Cohomology Tables

Let \mathcal{E} be a coherent sheaf on \mathbb{P}^n , for example a vector bundle. We have the dimensions of the cohomology groups

$$\gamma_{ij} = h^i(\mathbb{P}^n, \mathcal{E}(j)).$$

We identify the cohomology table $\gamma(\mathcal{E}) = (\gamma_{ij})$ with an element of

$$\prod_{i\in\mathbb{Z}}\mathbb{Q}^{n+1}.$$

Supernatural Sheaves

A sheaf \mathcal{E} on \mathbb{P}^m has natural cohomology, if for each twist k at most one group $H^i(\mathcal{E}(k)) \neq 0$. It is supernatural, if in addition the Hilbert polynomial

$$\chi(\mathcal{E}(t)) = \frac{\operatorname{rank} \, \mathcal{E}}{n!} \prod_{k=1}^{n} (t - z_k)$$

has pairwise distinct integral roots $z=(z_1>\ldots>z_n)$. (Here n is the dimension of the support of the sheaf.) We denote the cohomology table of a supernatural sheaf with root sequence z and degree n! by γ^z

Existence

Theorem

There exists supernatural sheaf bundle for any given zero sequence $z = (z_1, ..., z_s)$.

Example

The Cohomology table of a supernatural rank 3 vector bundle on \mathbb{P}^3 with roots z = (3, -1, -4) is

Here the entry in position (k, i) is the dimension of the cohomology group $H^{i}(\mathcal{E}(k-i))$.

Some Pairings

Main idea: consider the pairing

$$\langle \beta, \gamma \rangle = \sum_{\{i,j,k|j \leq i\}} (-1)^{i-j} \beta_{i,k} \gamma_{j,-k}.$$

We abbreviate

$$\langle M, \mathcal{E} \rangle = \langle F, \mathcal{E} \rangle = \langle \beta(F), \gamma(\mathcal{E}) \rangle$$

Positivity Theorem 1

Theorem

Let F be any free resolution of an S-module, and let $\mathcal E$ be any coherent sheaf. Then

$$\langle \textbf{\textit{F}}, \mathcal{E} \rangle \geq 0$$

Moreover, if

$$0 > reg M + reg \mathcal{E}$$
, and

$$0 > reg F_{i-1} + reg \oplus_k H^i \mathcal{E}(k)$$
 for all $i > 0$,

then
$$\langle F, \mathcal{E} \rangle = 0$$
.

Truncation

We modify $\langle -, \mathcal{E} \rangle$ by a suitable truncation

$$\langle \beta, \gamma \rangle_{\mathbf{C}, \tau} = \sum_{\substack{\{i, j, k | j \le i-2 \text{ or } j < \tau\} \\ - \sum_{\substack{\{i, j, k | j = i-1 = \tau, k \le \mathbf{C} + 1\} \\ + \sum_{\substack{\{i, j, k | j = i = \tau, k \le \mathbf{C}\} }} \beta_{\tau, k} \gamma_{\tau, -k} }$$

Theorem

The functional $\langle -, \mathcal{E} \rangle_{\tau,c}$ is non negative on minimal free resolutions.

Cohomology of Coherent Sheaves

An analogue of Boij-Söderberg for vector bundles

Theorem (- and Schreyer)

The cohomology table of an arbitrary vector bundle on \mathbb{P}^n is a finite positive linear combination of cohomology tables of supernatural bundles.

Boij-Söderberg analog for coherent sheaf

If Z is an infinite set of zero sequences, $(q_z)_{z\in Z}$ a sequence of numbers, and γ is a cohomology table, we write $\gamma = \sum_{z\in Z} q_z \gamma^z$, to mean that each entry $\sum_{z\in Z} q_z \gamma^z_{i,d}$ converges to $\gamma_{i,d}$.

Theorem (E-S, 2009)

Let $\gamma(\mathcal{F})$ be the cohomology table of a coherent sheaf \mathcal{F} on \mathbb{P}^n . There is a unique chain of zero-sequences Z and a unique expression

$$\gamma(\mathcal{F}) = \sum_{z \in \mathcal{Z}} q_z \gamma^z,$$

where the q_7 are positive numbers.

Example

The ideal sheaf \mathcal{I}_p of a point in \mathbb{P}^2 has the cohomology table

where we dropped zero entries for the better visibility of the shape. Then

$$\gamma(\mathcal{I}_p) = \sum_{k=2}^{\infty} q_{(0,-k)} \gamma^{(0,-k)}$$

with

$$q_{(0,-k)} = \frac{2}{(k-1)k(k+1)}.$$

Cohomology of Coherent Sheaves

Idea of proof

Look at the supernatural sheaf with largest zero-sequence with the same upper shape as the given sheaf,

```
... 10 6 3 1 2 1 1 1 1 1 1 1 1 2 5 9 14 ... 0
```

Look at the supernatural sheaf with largest zero-sequence with the same upper shape as the given sheaf,

Look at the supernatural sheaf with largest zero-sequence with the same upper shape as the given sheaf,

in our case $\gamma^{(0,-2)}$, and subtract as much as possible,

Look at the supernatural sheaf with largest zero-sequence with the same upper shape as the given sheaf,

in our case $\gamma^{(0,-2)}$, and subtract as much as possible,

such that corners stay non-negative:

Look at the supernatural sheaf with largest zero-sequence with the same upper shape as the given sheaf,

in our case $\gamma^{(0,-2)}$, and subtract as much as possible,

such that corners stay non-negative: $\gamma - \frac{1}{3}\gamma^{(0,-2)}$

Idea of proof, 2nd step

Now look at

subtract a multiple of $\gamma^{(0,-3)}$:

Idea of proof, 2nd step

Now look at

subtract a multiple of $\gamma^{(0,-3)}$:

We get
$$\gamma - \frac{1}{3}\gamma^{(0,-2)} - \frac{1}{12}\gamma^{(0,-3)}$$
.

Idea of proof, 2nd step

Now look at

subtract a multiple of $\gamma^{(0,-3)}$:

We get
$$\gamma - \frac{1}{3}\gamma^{(0,-2)} - \frac{1}{12}\gamma^{(0,-3)}$$
. Continue ... !

$$\gamma - \frac{1}{3}\gamma^{(0,-2)} - \frac{1}{12}\gamma^{(0,-3)} - \frac{1}{30}\gamma^{(0,-4)}$$

$$\cdots \frac{1}{10}$$

$$\cdots 1 1 \frac{9}{10} \frac{7}{10} \frac{2}{5}$$

$$\frac{1}{2} \frac{11}{10} \frac{9}{5} \frac{13}{5} \cdots$$

$$\gamma - \frac{1}{3}\gamma^{(0,-2)} - \frac{1}{12}\gamma^{(0,-3)} - \frac{1}{30}\gamma^{(0,-4)}$$

$$\cdots \frac{1}{10}$$

$$\cdots 1 \frac{9}{10} \frac{7}{10} \frac{2}{5}$$

$$\frac{1}{2} \frac{11}{10} \frac{9}{5} \frac{13}{5} \cdots$$

Proposition (Key claim)

All entries of the table stay non-negative through out this process.

Proposition (Key claim)

All entries of the table stay non-negative through out this process.

Proposition (Key claim)

All entries of the table stay non-negative through out this process.

Thanks!