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Ideals, Varieties and Algorithms (in the Tropics)

Fix field K with a valuation, such as Q, Qp, Q(t), C, Cp, C{{t}}.
If f ∈ K [x1, . . . , xn] and w ∈ Rn then the initial form inw (f ) is the
sum of all terms in the expansion of f that have maximal w -weight.
The tropical hypersurface of f is the (n − 1)-dimensional complex

T (f ) = {w ∈ Rn : inw (f ) is not a monomial }.
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⋂
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T (f ).

If I is generated by linear forms then T (I ) is a tropicalized plane.

Facts: Every tropical variety is a prevariety (but not vice versa),
i.e. every ideal I has a finite tropical basis. If I is prime of dim d
then T (I ) is a strongly connected pure polyhedral complex of
dimension d in Rn. You can compute T (I ) with GFan !!



The Grassmannian and the Dressian
The Plücker ideal Id,n is a prime ideal in a polynomial ring in

(

n
d

)

variables (over Q). Its elements are algebraic relations among the
d×d-minors of a d×n-matrix. It is generated by quadrics such as

x12 x34 − x13 x24 + x14 x23 (for d = 2, n = 4).

These quadrics form a tropical basis if d = 2 but not if d ≥ 3.
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Theorem (Speyer-St.)

The Grassmannian Gr(d , n) is the parameter space for all
tropicalized (d−1)-planes in TPn−1. The Dressian Dr(d , n)
is the parameter space for all tropical (d−1)-planes in TPn−1.



The Grassmannian of Planes in TP5 = R6/R(1,1,1,1,1,1)

In 2003, the dark days before GFan, David Speyer and I computed
the Grassmannian Gr(3, 6). We found that Gr(3, 6) is a three-
dimensional simplicial complex with 65 vertices, 550 edges, 1395
triangles and 1035 tetrahedra. This complex triangulates Dr(3, 6).

Its homology is that of a bouquet of 126 3-spheres (cf. [Hacking]).

There are 1035 generic tropical planes in TP5. Up to symmetry
there are seven types. Each plane is a contractible complex
which we think of as a “two-dimensional tree on six taxa”.

Question: How to draw a tropical plane ?
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Answer: Draw the bounded part or draw the unbounded part.

The bounded part is a cell complex whose vertices are labeled
by rank 3 matroids on {1, 2, 3, 4, 5, 6}. This picture is dual to
a matroid subdivision of the hypersimplex ∆(3, 6).
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Tropicalized Planes versus Tropical Planes

.... is the same as ... Realizable Matroids versus All Matroids.

Figure: The point configurations for the Fano and non-Fano matroids.

Theorem
The Grassmannian Gr(3, n) is a pure polyhedral complex
of dimension 2n − 9. The Dressian Dr(3, n) is not pure
and it strictly contains Gr(3, n) for n ≥ 7.
The dimension of the Dressian Dr(3, n) is of order Θ(n2).



Serious Computations

Theorem (GFan, cddlib, homology)

The tropical Grassmannian Gr(3, 7) is a simplicial complex with

f -vector = (721, 16800, 124180, 386155, 522585, 252000) .

Its homology is free Abelian and concentrated in top dimension:

H∗

(

Gr(3, 7); Z
)

= H5

(

Gr(3, 7); Z
)

= Z7470 .



Serious Computations

Theorem (GFan, cddlib, homology)

The tropical Grassmannian Gr(3, 7) is a simplicial complex with

f -vector = (721, 16800, 124180, 386155, 522585, 252000) .

Its homology is free Abelian and concentrated in top dimension:

H∗

(

Gr(3, 7); Z
)

= H5

(

Gr(3, 7); Z
)

= Z7470 .

Theorem (Polymake, homology)

The Dressian Dr(3, 7) is a 6-dimensional polyhedral complex with

f -vector = (616, 13860, 101185, 315070, 431025, 211365, 30) .

Its 5-skeleton is triangulated by the Grassmannian Gr(3, 7), and
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= Z7440 .
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Mixed subdivisions of the triangle of side length n − 3 determine
metric arrangements of n trees. In the picture we have n = 6.



Drawing The Unbounded Part of a Tropical Plane

Let n ≥ 4 and consider an n-tuple of metric trees
T = (T1,T2, . . . ,Tn) where Ti has the set of leaves [n]\{i}.

A metric tree Ti comes with with non-negative edge lengths
By adding lengths along paths, the tree Ti defines a metric

δi : ([n]\{i}) × ([n]\{i}) → R≥0.

An n-tuple T of metric trees is an arrangement of metric trees if

δi (j , k) = δj(k, i) = δk(i , j) for all i , j , k ∈ [n].

Theorem
The combinatorial types of tropical planes in TPn−1 (i.e. cells in
Dr(3, n)) are in bijection with the arrangements of n metric trees.



Some Tree Arrangements are Not Metrizable
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Figure: Abstract arrangement of nine caterpillar trees on eight leaves
encoding a matroid subdivision that does not come from a tropical plane.


