How to Draw Tropical Planes¹

Bernd Sturmfels UC Berkeley

AMS Special Session on Computational Algebra and Convexity Washington DC, January 7, 2009

¹Joint work with Sven Hermann, Anders Jensen and Michael Joswig E 👘 🚊 🔗 ९.९

Ideals, Varieties and Algorithms (in the Tropics)

Fix field K with a valuation, such as \mathbb{Q} , \mathbb{Q}_p , $\mathbb{Q}(t)$, \mathbb{C} , \mathbb{C}_p , $\mathbb{C}\{\{t\}\}$. If $f \in K[x_1, \ldots, x_n]$ and $w \in \mathbb{R}^n$ then the *initial form* $\operatorname{in}_w(f)$ is the sum of all terms in the expansion of f that have maximal w-weight. The *tropical hypersurface* of f is the (n-1)-dimensional complex

 $\mathcal{T}(f) = \{ w \in \mathbb{R}^n : in_w(f) \text{ is not a monomial } \}.$

Ideals, Varieties and Algorithms (in the Tropics)

Fix field K with a valuation, such as \mathbb{Q} , \mathbb{Q}_p , $\mathbb{Q}(t)$, \mathbb{C} , \mathbb{C}_p , $\mathbb{C}\{\{t\}\}$. If $f \in K[x_1, \ldots, x_n]$ and $w \in \mathbb{R}^n$ then the *initial form* $\operatorname{in}_w(f)$ is the sum of all terms in the expansion of f that have maximal w-weight. The *tropical hypersurface* of f is the (n-1)-dimensional complex

 $\mathcal{T}(f) = \{ w \in \mathbb{R}^n : in_w(f) \text{ is not a monomial } \}.$

A *tropical prevariety* is a finite intersection of such hypersurfaces. Every ideal *I* in $K[x_1, ..., x_n]$ defines a *tropical variety* as follows:

$$\mathcal{T}(I) = \bigcap_{f \in I} \mathcal{T}(f).$$

If I is generated by linear forms then $\mathcal{T}(I)$ is a *tropicalized plane*.

Ideals, Varieties and Algorithms (in the Tropics)

Fix field K with a valuation, such as \mathbb{Q} , \mathbb{Q}_p , $\mathbb{Q}(t)$, \mathbb{C} , \mathbb{C}_p , $\mathbb{C}\{\{t\}\}$. If $f \in K[x_1, \ldots, x_n]$ and $w \in \mathbb{R}^n$ then the *initial form* $\operatorname{in}_w(f)$ is the sum of all terms in the expansion of f that have maximal w-weight. The *tropical hypersurface* of f is the (n-1)-dimensional complex

 $\mathcal{T}(f) = \{ w \in \mathbb{R}^n : in_w(f) \text{ is not a monomial } \}.$

A *tropical prevariety* is a finite intersection of such hypersurfaces. Every ideal *I* in $K[x_1, ..., x_n]$ defines a *tropical variety* as follows:

$$\mathcal{T}(I) = \bigcap_{f \in I} \mathcal{T}(f).$$

If I is generated by linear forms then $\mathcal{T}(I)$ is a *tropicalized plane*.

Facts: Every tropical variety is a prevariety (but not vice versa), i.e. every ideal *I* has a finite *tropical basis*. If *I* is prime of dim *d* then $\mathcal{T}(I)$ is a strongly connected pure polyhedral complex of dimension *d* in \mathbb{R}^n . You can compute $\mathcal{T}(I)$ with GFan !!

・ロト ・ 日 ・ モ ト ・ 田 ・ うへぐ

The Grassmannian and the Dressian

The *Plücker ideal* $I_{d,n}$ is a prime ideal in a polynomial ring in $\binom{n}{d}$ variables (over \mathbb{Q}). Its elements are algebraic relations among the $d \times d$ -minors of a $d \times n$ -matrix. It is generated by quadrics such as

$$x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$$
 (for $d = 2, n = 4$).

These quadrics form a tropical basis if d = 2 but not if $d \ge 3$.

The Grassmannian and the Dressian

The *Plücker ideal* $I_{d,n}$ is a prime ideal in a polynomial ring in $\binom{n}{d}$ variables (over \mathbb{Q}). Its elements are algebraic relations among the $d \times d$ -minors of a $d \times n$ -matrix. It is generated by quadrics such as

$$x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$$
 (for $d = 2, n = 4$)

These quadrics form a tropical basis if d = 2 but not if $d \ge 3$.

The *Grassmannian* Gr(d, n) is the tropical variety $\mathcal{T}(I_{d,n})$. This is a pure fan of dimension d(n-d) + 1. We represent this fan as a polyhedral complex of dimension d(n-d) - n. The *Dressian* Dr(d, n) is the prevariety defined by the set of quadrics in $I_{d,n}$.

Example. Gr(2, n) = Dr(2, n) is the space of phylogenetic trees.

The Grassmannian and the Dressian

The *Plücker ideal* $I_{d,n}$ is a prime ideal in a polynomial ring in $\binom{n}{d}$ variables (over \mathbb{Q}). Its elements are algebraic relations among the $d \times d$ -minors of a $d \times n$ -matrix. It is generated by quadrics such as

$$x_{12}x_{34} - x_{13}x_{24} + x_{14}x_{23}$$
 (for $d = 2, n = 4$).

These quadrics form a tropical basis if d = 2 but not if $d \ge 3$.

The *Grassmannian* $\operatorname{Gr}(d, n)$ is the tropical variety $\mathcal{T}(I_{d,n})$. This is a pure fan of dimension d(n-d) + 1. We represent this fan as a polyhedral complex of dimension d(n-d) - n. The *Dressian* $\operatorname{Dr}(d, n)$ is the prevariety defined by the set of quadrics in $I_{d,n}$.

Example. Gr(2, n) = Dr(2, n) is the space of phylogenetic trees.

Theorem (Speyer-St.)

The Grassmannian Gr(d, n) is the parameter space for all tropicalized (d-1)-planes in \mathbb{TP}^{n-1} . The Dressian Dr(d, n) is the parameter space for all tropical (d-1)-planes in \mathbb{TP}^{n-1} .

The Grassmannian of Planes in $\mathbb{TP}^5 = \mathbb{R}^6 / \mathbb{R}(1,1,1,1,1,1)$

In 2003, the dark days before GFan, David Speyer and I computed the Grassmannian Gr(3, 6). We found that Gr(3, 6) is a threedimensional simplicial complex with 65 vertices, 550 edges, 1395 triangles and 1035 tetrahedra. This complex triangulates Dr(3, 6).

Its homology is that of a bouquet of 126 3-spheres (cf. [Hacking]).

There are 1035 generic tropical planes in \mathbb{TP}^5 . Up to symmetry there are seven types. Each plane is a contractible complex which we think of as a "two-dimensional tree on six taxa".

Question: How to draw a tropical plane ?

The Grassmannian of Planes in $\mathbb{TP}^5 = \mathbb{R}^6 / \mathbb{R}(1,1,1,1,1,1)$

In 2003, the dark days before GFan, David Speyer and I computed the Grassmannian Gr(3, 6). We found that Gr(3, 6) is a threedimensional simplicial complex with 65 vertices, 550 edges, 1395 triangles and 1035 tetrahedra. This complex triangulates Dr(3, 6).

Its homology is that of a bouquet of 126 3-spheres (cf. [Hacking]).

There are 1035 generic tropical planes in \mathbb{TP}^5 . Up to symmetry there are seven types. Each plane is a contractible complex which we think of as a "two-dimensional tree on six taxa".

Question: How to draw a tropical plane ?

Answer: Draw the bounded part or draw the unbounded part.

The bounded part is a cell complex whose vertices are labeled by rank 3 matroids on $\{1, 2, 3, 4, 5, 6\}$. This picture is dual to a *matroid subdivision* of the hypersimplex $\Delta(3, 6)$.

・ロト ・個ト ・モト ・モト

Ξ.

Tropicalized Planes versus Tropical Planes

.... is the same as ... Realizable Matroids versus All Matroids.

Figure: The point configurations for the Fano and non-Fano matroids.

・ロト ・ 日 ・ モ ・ ト ・ 田 ・ うらぐ

Theorem

The Grassmannian Gr(3, n) is a pure polyhedral complex of dimension 2n - 9. The Dressian Dr(3, n) is not pure and it strictly contains Gr(3, n) for $n \ge 7$. The dimension of the Dressian Dr(3, n) is of order $\Theta(n^2)$.

Serious Computations

Theorem (GFan, cddlib, homology)

The tropical Grassmannian $\operatorname{Gr}(3,7)$ is a simplicial complex with

f-vector = (721, 16800, 124180, 386155, 522585, 252000).

Its homology is free Abelian and concentrated in top dimension:

 $H_*(Gr(3,7);\mathbb{Z}) = H_5(Gr(3,7);\mathbb{Z}) = \mathbb{Z}^{7470}.$

Serious Computations

Theorem (GFan, cddlib, homology)

The tropical Grassmannian $\operatorname{Gr}(3,7)$ is a simplicial complex with

f-vector = (721, 16800, 124180, 386155, 522585, 252000).

Its homology is free Abelian and concentrated in top dimension:

 $H_*(Gr(3,7);\mathbb{Z}) = H_5(Gr(3,7);\mathbb{Z}) = \mathbb{Z}^{7470}.$

Theorem (Polymake, homology) The Dressian Dr(3,7) is a 6-dimensional polyhedral complex with

f-vector = (616, 13860, 101185, 315070, 431025, 211365, 30).

Its 5-skeleton is triangulated by the Grassmannian $\mathrm{Gr}(3,7)$, and

$$H_*(\mathrm{Dr}(3,7);\mathbb{Z}) = H_5(\mathrm{Dr}(3,7);\mathbb{Z}) = \mathbb{Z}^{7440}.$$

Serious Pictures

Mixed subdivisions of the triangle of side length n - 3 determine metric arrangements of n trees. In the picture we have n = 6.

Drawing The Unbounded Part of a Tropical Plane

Let $n \ge 4$ and consider an *n*-tuple of metric trees $T = (T_1, T_2, ..., T_n)$ where T_i has the set of leaves $[n] \setminus \{i\}$.

A *metric tree* T_i comes with with non-negative edge lengths By adding lengths along paths, the tree T_i defines a metric

 $\delta_i: ([n] \setminus \{i\}) \times ([n] \setminus \{i\}) \to \mathbb{R}_{\geq 0}.$

An *n*-tuple *T* of metric trees is an *arrangement of metric trees* if

$$\delta_i(j,k) = \delta_j(k,i) = \delta_k(i,j)$$
 for all $i,j,k \in [n]$.

Theorem

The combinatorial types of tropical planes in \mathbb{TP}^{n-1} (i.e. cells in Dr(3, n)) are in bijection with the arrangements of n metric trees.

Some Tree Arrangements are Not Metrizable

Figure: Abstract arrangement of nine caterpillar trees on eight leaves encoding a matroid subdivision that does not come from a tropical plane.